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Abstract

Autism Spectrum Disorders (ASD) are becoming increasingly common worldwide, highlighting the need for accurate and reliable early
detection methods. Utilizing machine learning for early detection is crucial for enhancing screening processes. This study investigates
how behavioral traits can help identify ASD through machine learning algorithms. The performance of several techniques, including
Gradient Boosting, Support Vector Machines, and Naive Bayes, is compared. The analysis reveals that A9, A6, A7, and A5 are the most
significant predictors of ASD, while A10, A8, A4, A3, A2, and A1 exhibit some predictive value but are less substantial. The results
demonstrate excellent performance across various machine learning classifiers for ASD detection. Gradient Boosting achieved perfect
classification (Accuracy = 0.98%, F1-Score = 0.98%), indicating powerful predictive ability. Support Vector Machine (SVM) produced
nearly perfect results (Accuracy = 0.97%, F1-Score = 0.97), while Naive Bayes also performed well (Accuracy = 0.96%, F1-Score =
0.96), despite its simpler design. These findings highlight the effectiveness of ensemble methods (Gradient Boosting) and kernel-based
models (SVM) in ASD screening, with potential for clinical application in early diagnosis. Policymakers are encouraged to adopt
machine learning-based screening tools to support early and accurate ASD diagnosis, which can lead to better patient outcomes.
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1. Introduction

1. Autism Spectrum Disorder (ASD) is a
complex neurodevelopmental condition that affects
communication, social interaction, and behavior. Early
and accurate diagnosis is crucial, as timely interventions
can significantly enhance developmental outcomes and
overall quality of life. Traditional diagnostic approaches
rely on behavioral assessments conducted by specialists,
which can be time-consuming, subjective, and resource-
intensive. As a result, there is a growing need for objective,
data-driven, and accessible tools that can assist in early
ASD screening.

2. Machine learning (ML) has emerged as a
transformative technology in healthcare analytics,
enabling the discovery of hidden patterns in complex
behavioral data. Recent studies have demonstrated
its effectiveness in detecting ASD traits using datasets
such as Q-Chat-10 and similar screening instruments
[1]-[9]. Techniques such as Decision Trees, Support
Vector Machines (SVM), and Naive Bayes have shown
encouraging vesults in identifying behavioral and
developmental markers of ASD. Furthermore, feature
selection methods—such as Principal Component
Analysis (PCA) and chi-square tests—have improved
diagnostic accuracy and model interpretability [2], [7].
The integration of machine learning into autism research,
as highlighted by Thabtah [6], represents a significant
advancement in technology-assisted diagnosis, leading
to the development of tools such as the ASDTests mobile
app [3], [4], which enable large-scale, early behavioral
screening.

3. However, many prior studies have emphasized
deep learning or image-based modalities that require
high computational resources and extensive datasets.
While powerful, such models often lack interpretability
and are not always practical for clinical or low-resource
settings. Moreover, studies that leverage behavioral
questionnaires have usually limited their analyses to
basic classification without comprehensive feature
ranking or interpretability assessment.

4. This study introduces an interpretable, resource-
efficient, and high-performing ASD screening framework
that objectively identifies the most influential behavioral
predictors using classical machine learning models. By
combining ensemble (Gradient Boosting) and kernel-
based (SVM) classifiers with rigorous feature-ranking
techniques (Information Gain, Gain Ratio, Chi-Square,
and Gradient Boosting Feature Importance), this
research provides a balanced trade-off between predictive
accuracy and model transparency. Unlike prior studies
that relied on image-based datasets [22], loT-based

emotion recognition [23], or explainable deep learning
models [24], our work focuses on behavioral screening
using the Q-Chat-10 questionnaire.

5. The main objectives and contributions of this
study are as follows:

* Novel integration of classical ML algorithms
with multi-criteria feature selection, enhancing
interpretability and robustness in behavior-based
ASD detection.

* Comprehensive feature importance analysis,
objectively identifying key behavioral traits (A9,
A7,AS, and A6) that significantly influence ASD
prediction.

*  Comparative evaluation of three complementary
classifiers—Gradient Boosting, SVM, and
Naive Bayes—demonstrating that lightweight
ensemble and kernel-based methods can achieve
accuracy comparable to deep learning while
maintaining interpretability.

e Clinical and practical relevance, offering a
transparent and computationally efficient
screening framework that can be adapted to
assist clinicians and policymakers in early
ASD detection, especially in resource-limited
environments.

e By addressing gaps in interpretability,
accessibility, and behavioral focus, this research
contributes a methodologically sound and
practically viable solution for enhancing ASD
screening and early diagnosis.

2. METHOD

2.1 Dataset

1. The dataset used in this paper results from an
autism screening of toddlers, which includes influential
features for further analysis, particularly in determining
autistic traits and improving the classification of ASD
cases. This dataset contains 1,054 instances and 18
attributes, including the target variable. The dataset
comprises 1,054 instances, with a balanced distribution
between ASD and non-ASD cases (approximately 50.3%
and 49.7%, respectively). Data preprocessing included
binary encoding, handling of missing values, and
stratified 10-fold cross-validation to mitigate imbalance.
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Table 1. Feature descriptions.

Feature Type Description
Al Binary (0, 1) Does your child respond by looking at you when you call their name?
A2 Binary (0, 1) How easily can you establish eye contact with your child?
A3 Binary (0, 1) Does your child use pointing gestures to express a desire for something? (e.g., a toy that is

out of reach)
A4 Binary (0, 1) Does your child want to share something they find interesting with you?
A5 Binary (0, 1) Does your child engage in pretend play? (e.g., care for dolls, talk on a toy phone)
A6 Binary (0, 1) Have you noticed if your child pays attention to what you’re looking at?
A7 Binary (0, 1) If someone in your family feels downf does your child try to comfort them? (e.g., stroking
hair, hugging them)
A8 Binary (0, 1) Would you describe your child’s first words as:
A9 Binary (0, 1) Does your child make use of basic gestures? (e.g., wave goodbye)
Al10 Binary (0, 1) Does your child gaze into space without any apparent purpose?
Target variable | Binary (Yes, No) Yes (ASD traits) or No (no ASD traits)

2. Attributes Al- A10: These items are part of
the Q-Chat-10, where possible answers to questions
are “Always,” “Usually,” “Sometimes,” “Rarely,” and
“Never.” These responses are mapped to binary values
(“1” or “0”) in the dataset. For questions 1-9 (A1- A9),
if the response is “Sometimes,” “Rarely,” or “Never,”
a value of “1” is assigned. For question 10 (410), a
response of “Always,” “Usually,” or “Sometimes " results
ina “1” being assigned. A cumulative score of more than
3 across all 10 questions indicates potential ASD traits;
otherwise, no ASD characteristics are observed.

3. The remaining Features are collected from
the ASDTests application [12]. The target variable is
assigned automatically based on the score obtained by
the user during the screening process using the ASDTests
application.

2.2 Feature Importance Analysis

1. This section details the methodology employed
to identify the most influential behavioral features in
predicting ASD traits within the Q-Chat-10 dataset.
Feature selection is crucial for building parsimonious
and interpretable models while mitigating the risk of
overfitting.

Table 3. Features Ranks

2. Several feature ranking methods were utilized to
evaluate the importance of each feature:

* Information Gain: This metric quantifies the
reduction in uncertainty about the target variable
(ASD traits) achieved by knowing the value
of a particular feature. Features with higher
Information Gain are deemed more informative
[14].

*  Gain Ratio: A normalized version of Information
Gain that addresses the bias toward features with
many values [14].

e Gini Index: Measures the impurity of a node in
a decision tree, with higher values indicating
greater impurity. Features that effectively reduce
Gini impurity are considered more critical [15].

e Chi-Square Test (y¥?): Evaluates the statistical
dependence between a feature and the target
variable. Higher y> values suggest stronger
associations.

*  Gradient Boosting Feature Importance: Derived
from the Gradient Boosting algorithm, this
metric reflects the contribution of each feature to
the model’s predictive performance [16].

Features Information gain Gain ratio Gini Index e Gradient Boosting
A9 0.278 0.278 0.142 179.324 14.666
A7 0.229 0.245 0.136 117.035 11.546
A5 0.252 0.252 0.136 158.969 11.228
A2 0.174 0.175 0.092 124.8 10.858
A6 0.246 0.25 0.139 144.613 10.5
Al 0.191 0.193 0.108 116.759 9.714
A8 0.144 0.144 0.078 104.003 9.467
A4 0.199 0.199 0.109 131.189 9.284
Al10 0.023 0.024 0.014 14.1 6.437
A3 0.137 0.141 0.072 105.916 5.699




Gamal Saad Mohamed Khamis: Optimizing Autism Spectrum Disorder Screening with Machine Learning:

Identifying Key Behavioral Predictors and Model Performance

16-9

Table 3 and Figure 2 provide a summary of the feature
ranking results. While A9, A6, A7, and A5 emerged as the
most prominent predictors, the remaining features (A10,
AS8,A4,A3,A2, and A1) also exhibited varying predictive
power. Although lower than the top four, their rankings
suggest potential contributions to ASD prediction.
Features such as Jaundice, Sex, family mem_with ASD,
and Ethnicity demonstrated minimal predictive power.
The observed rankings provide valuable insights into the
relative importance of different behavioral features in
predicting ASD traits.

3.

Figure 2. Information Gain Feature Importance Ranking

4.

Figure 3: Gradient Boosting Feature Importance Ranking

The feature importance analysis summarized in Table
2, Figure 2, and Figure 3 highlights key predictors of ASD
traits within the Q-Chat-10 dataset. Features A9, A7,
A5, and A6 consistently emerged as the most influential
predictors across multiple ranking methods, indicating
their strong relevance to ASD prediction. Features A2,
Al, A8, and A4 showed moderate predictive power,
while A10 and A3 ranked lowest, contributing minimal
influence. Figure 2 emphasizes the dominance of A9, A7,
and A5 in the Information Gain ranking, while Figure
3 further confirms their significance through Gradient
Boosting Feature Importance scores. These findings
highlight the importance of communication gestures and
social responses in accurately predicting ASD traits.

2.3 ML-based Toddler ASD predictive models

Machine learning (ML) techniques have shown
promising results in the early detection of several diseases
and disorders, including autism spectrum disorder (ASD)
in young children. In this research, we applied many
machine learning methods, including:

* Gradient Boosting is a machine learning technique
used for regression and classification tasks. It creates a
strong predictive model by combining multiple weak
learners, usually decision trees, into an ensemble. The
algorithm works iteratively, adding one tree at a time and
adjusting subsequent trees to correct the errors of earlier
ones [18]. Key features of this classifier include:

Maximum Number of Trees: This hyperparameter
is used to determine the number of trees; the more trees
there are, the better the performance of the classifier.
Learning Rate: This hyperparameter minimizes the
contribution of each tree.Replicable Training: Fix the
random seed to enable the replicability of the results.

* Support Vector Machines (SVM): Support
Vector Machine (SVM) is a supervised learning method
employed for classification and regression tasks, though
it is primarily utilized in classification scenarios. The
primary objective of SVM is to determine the optimal
boundary, known as the hyperplane, that effectively
separates the classes within the feature space. This
hyperplane is positioned to maximize the gap between
it and the nearest data points from each category. These
nearest points are referred to as support vectors. SVM
was chosen due to its strong performance on small-to-
medium datasets with high-dimensional features, while
Naive Bayes provides a probabilistic baseline. LSTM
and attention-based models, though powerful, were not
selected as the dataset is relatively small and sequential
dependencies are limited in Q-Chat-10 responses.

In two-dimensional space, a hyperplane functions as
a line that divides data into two categories, while in three
dimensions, it appears as a plane. As the dimensionality
increases, it assumes a more abstract form. The goal
is to identify the hyperplane that most effectively
separates the classes, maximizing the distance between
this boundary and the closest data points, referred to as
support vectors, which play a crucial role in defining the
decision boundary. The margin, defined as the distance
between the hyperplane and these support vectors, is also
maximized to enhance classification accuracy. When
the data is not linearly separable, the kernel trick can be
utilized to shift the original feature space into a higher
dimension. This transformation permits linear separation
using kernel functions such as linear, polynomial, radial
basis function, and sigmoid, each offering distinct data
mappings [18].
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* Naive Bayes: The Naive Bayes algorithm is a
well-established probabilistic classifier that leverages the
concept of probability to solve classification problems
straightforwardly and efficiently. By applying the
principles of Bayes’ theorem, this method learns the
likelihood of individual items, their attributes, and the
categories to which those attributes correspond. It operates
within a supervised learning framework, categorizing new
instances by assigning them to the class with the highest
probability of membership. The classification process
involves two key stages: A) Training phase: During this
stage, the algorithm calculates the probability distribution
based on the training data. B) Prediction phase: For a test
instance, it assesses the posterior probability for that
unknown sample, determining its most likely class based
on the highest posterior probability, known as Maximum
A Posterior (MAP) [19].

2.4 Hyperparameter Tuning

A hyperparameter-tuning process optimized the
performance of each machine learning model. Due to
computational limitations, manual tuning was conducted.
The key hyperparameters and their tuning strategies are
described below:

Gradient Boosting: Maximum Number of
Trees: This hyperparameter was manually adjusted to
determine the number of trees in the ensemble. Higher
values generally improve performance but can also lead
to overfitting. Values ranging from 100 to 200 were
tested, with a focus on identifying a balance between
performance and computational efficiency.

Support Vector Machines (SVM): Kernel: Given
the nature of the data, the radial basis function (RBF)
was evaluated. gamma constant in kernel function(g):
was auto tuned. The recommended value is 1/k, where
k is the number of attributes. SVM was chosen due to
its strong performance on small-to-medium datasets with
high-dimensional features, while Naive Bayes provides a
probabilistic baseline. LSTM and attention-based models,
though powerful, were not selected as the dataset is
relatively small and sequential dependencies are limited
in Q-Chat-10 responses.

Naive Bayes: The provided text doesn’t mention any
specific hyperparameter tuning for Naive Bayes.

To ensure robust and generalizable results, we
evaluated the performance of each machine learning
model using a 10-fold cross-validation approach. This
technique helps mitigate overfitting and provides a more
reliable estimate of model performance on unseen data.
In 10-fold cross-validation, the dataset is divided into
10 folds. The model is trained on 9 folds and tested on
the remaining fold, repeating this process 10 times, each
serving as the test set once. The reported performance

metrics (AUC, Accuracy, F1 Score, Precision, Recall, and
MCC) represent the average performance across these
10 folds. This approach provides a more comprehensive
assessment of the models’ ability to generalize to new
data compared to a single train-test split.

3. RESULTS AND DISCUSSION

3.1 Predictive Performance Analysis

The predictive performance of the three machine
learning models—Gradient Boosting, Support Vector
Machine (SVM), and Naive Bayes—was rigorously
evaluated using stratified 10-fold cross-validation to
ensure robustness and generalization. Evaluation metrics
included the Area Under the Curve (AUC), Accuracy, F1-
Score, Precision, Recall, and the Matthews Correlation
Coefficient (MCC). Table 4 summarizes the results.

Table 4: Model’s performance Metrics

Classifier | AUC | Accuracy Fl- Precision | Recall | MCC
Score
Gradient | 905 | (980 | 0.980 | 0.980 | 0.980 | 0.953
Boosting
SVM | 0998 | 0976 | 0976 | 0976 | 0.976 | 0.944
Naive 1 o997 | 0961 | 0962 | 0964 | 0.961 | 0.914
Bayes

The results indicate that all three classifiers achieved
robust predictive performance, with Gradient Boosting
exhibiting the highest accuracy (98.0%) and AUC (0.999).
The SVM model followed closely (accuracy = 97.6%,
AUC = 0.998), while Naive Bayes also demonstrated
competitive results (accuracy = 96.1%, AUC = 0.997)
despite its relatively simple probabilistic framework.
These findings highlight the effectiveness of ensemble
and kernel-based learning approaches in modeling
behavioral data for ASD prediction.

When compared with previously published
studies using similar datasets, the proposed approach
demonstrates advancements in predictive accuracy. For
instance, Rashed et al. [1] reported accuracies ranging
from 96 to 98% using Random Forest and Logistic
Regression. In contrast, Alzakari et al. [2] achieved 97.3%
accuracy with explainable Al models based on optimized
decision trees. In contrast, the proposed Gradient
Boosting model achieved 98.0% accuracy with an AUC
of 0.999, reflecting improvement in generalization
performance while preserving model interpretability. This
enhanced outcome is primarily attributed to the model’s
optimized hyperparameter configuration and ensemble
learning architecture. The near-comparable performance
of the SVM further reinforces its robustness in capturing
complex, high-dimensional behavioral interactions
characteristic of ASD screening datasets [19].
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Table 5 presents a comparative summary of the proposed models’ performance relative to prior machine learning

approaches from the literature.

Table 5. Comparative summary of the proposed models

Study / Model Dataset Technique Accuracy (%) Remarks
Tabtah (2017) [3] Q-Chat-10 Decision Tree 92.0 Early behavioral model; limited
feature selection
Thabtah et al. (2018) [7] Q-Chat-10 Random Forest 96.8 Strong baseline; m oderate
interpretability
Heinsfeld et al. (2018) ABIDE Deep Neural Network 97.0 High accuracy; requires
[5] neuroimaging data
Alzakari E:; ]al. (2024) Hybrid dataset Explainable AI (XAI) 973 Interpretable; hlcg:;r computational
Gradient Boosting + Highest accuracy; interpretable and
Proposed (2025) Q-Chat-10 Feature Ranking %8 lightweight

The comparative findings indicate that the proposed
Gradient Boosting model, when integrated with feature-
ranking techniques, demonstrates strong and consistent
predictive performance, maintaining a high level of
interpretability compared to existing ASD screening
approaches. Unlike previous studies that depend on large
or multimodal datasets (e.g., ABIDE MRI data), the
present framework relies solely on behavioral indicators
derived from the Q-Chat-10, making it more feasible and
scalable for use in both clinical and community-based
screening environments. The promising performance
of the proposed framework can be attributed to the
following factors. First, a rigorous feature selection
process combining Information Gain, Gain Ratio, Chi-
Square, and Gradient Boosting importance was employed

to retain only the most informative behavioral indicators.
Second, the use of a balanced dataset (50.3% ASD vs.
49.7% non-ASD) and 10-fold stratified cross-validation
enhanced generalizability and minimized class imbalance
bias. Third, the ensemble learning structure of Gradient
Boosting effectively modeled complex, non-linear
relationships among key behavioral traits—particularly
A9 (gestures), A7 (empathy behaviors), and A5
(pretend play)—which are established markers of ASD-
related social interaction [7], [9]. Finally, the model’s
interpretability aligns with prior behavioral psychology
findings [3], [9], reinforcing its empirical soundness and
clinical relevance.



Journal of the North for Basic and Applied Sciences (JNBAS), Vol. (10) - Issue (2), November 2025 - Jumada-Al-Awal 1447H 16-9

Figures 3-8. Visualization of feature importance and class separation across Gradient Boosting,
SVM, and Naive Bayes models.
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3.2 Discussion of Potential Biases and Limitations

Although the proposed framework demonstrated
high predictive accuracy (96%, 97% and 98%) and
strong generalization, several limitations warrant
acknowledgment. The dataset, obtained from a single
online source (ASDTests), may introduce cultural and
demographic bias, as behavioral interpretations such as
“pretend play” or “comforting behavior” can vary across
populations. Moreover, the binary encoding of Q-Chat-10
responses, while computationally efficient, may reduce
behavioral nuance.

To mitigate potential overfitting, the study
employed stratified 10-fold cross-validation and multi-
criteria feature selection (Information Gain, Gain
Ratio, Chi-Square, and Gradient Boosting importance),
which enhanced model stability and interpretability.
Nevertheless, validation using independent and more
diverse datasets is necessary to confirm the robustness of
these findings.

Although Gradient Boosting and SVM achieved
high accuracy, their decision-making processes remain
partially opaque, highlighting the need for future
integration of explainable Al (XAI) frameworks to
enhance clinical interpretability and trust. Additionally,
the absence of direct collaboration with clinicians in
this phase limits immediate clinical applicability; such a
partnership will be prioritized in future work to ensure
practical validation and usability.

4. CONCLUSION

This study demonstrates the effectiveness of
machine learning techniques, particularly Gradient
Boosting, Support Vector Machines, and Naive Bayes,
in accurately predicting Autism Spectrum Disorder
(ASD) using behavioral data from the Q-Chat-10 dataset.
Through comprehensive feature selection and ranking,
the analysis identified key behavioral predictors A9
(gestures), A7 (empathy), and AS (pretend play) that
consistently influenced ASD classification, highlighting
their diagnostic relevance.

The proposed models achieved high accuracy and
interpretability, offering a computationally efficient and
clinically practical framework for early ASD screening.
While results are promising, the study acknowledges
limitations related to dataset representativeness and
binary encoding, which may affect generalizability. These
challenges were mitigated through cross-validation and
rigorous feature selection, ensuring robust performance.

Future work should extend model validation across
diverse and longitudinal datasets, incorporate multimodal
behavioral and physiological data, and integrate
explainable Al (XAI) techniques to enhance transparency
and clinical adoption. Overall, the findings emphasize
the potential of interpretable ML models to support
early, data-driven, and accessible ASD diagnosis in both
research and healthcare settings.
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