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Abstract
Autism Spectrum Disorders (ASD) are becoming increasingly common worldwide, highlighting the need for accurate and reliable early 
detection methods. Utilizing machine learning for early detection is crucial for enhancing screening processes. This study investigates 
how behavioral traits can help identify ASD through machine learning algorithms. The performance of several techniques, including 
Gradient Boosting, Support Vector Machines, and Naïve Bayes, is compared. The analysis reveals that A9, A6, A7, and A5 are the most 
significant predictors of ASD, while A10, A8, A4, A3, A2, and A1 exhibit some predictive value but are less substantial. The results 
demonstrate excellent performance across various machine learning classifiers for ASD detection. Gradient Boosting achieved perfect 
classification (Accuracy = 0.98%, F1-Score = 0.98%), indicating powerful predictive ability. Support Vector Machine (SVM) produced 
nearly perfect results (Accuracy = 0.97%, F1-Score = 0.97), while Naïve Bayes also performed well (Accuracy = 0.96%, F1-Score = 
0.96), despite its simpler design. These findings highlight the effectiveness of ensemble methods (Gradient Boosting) and kernel-based 
models (SVM) in ASD screening, with potential for clinical application in early diagnosis. Policymakers are encouraged to adopt 
machine learning-based screening tools to support early and accurate ASD diagnosis, which can lead to better patient outcomes. 
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1.	 Introduction
1.	 Autism Spectrum Disorder (ASD) is a 

complex neurodevelopmental condition that affects 
communication, social interaction, and behavior. Early 
and accurate diagnosis is crucial, as timely interventions 
can significantly enhance developmental outcomes and 
overall quality of life. Traditional diagnostic approaches 
rely on behavioral assessments conducted by specialists, 
which can be time-consuming, subjective, and resource-
intensive. As a result, there is a growing need for objective, 
data-driven, and accessible tools that can assist in early 
ASD screening.

2.	 Machine learning (ML) has emerged as a 
transformative technology in healthcare analytics, 
enabling the discovery of hidden patterns in complex 
behavioral data. Recent studies have demonstrated 
its effectiveness in detecting ASD traits using datasets 
such as Q-Chat-10 and similar screening instruments 
[1]–[9]. Techniques such as Decision Trees, Support 
Vector Machines (SVM), and Naïve Bayes have shown 
encouraging results in identifying behavioral and 
developmental markers of ASD. Furthermore, feature 
selection methods—such as Principal Component 
Analysis (PCA) and chi-square tests—have improved 
diagnostic accuracy and model interpretability [2], [7]. 
The integration of machine learning into autism research, 
as highlighted by Thabtah [6], represents a significant 
advancement in technology-assisted diagnosis, leading 
to the development of tools such as the ASDTests mobile 
app [3], [4], which enable large-scale, early behavioral 
screening.

3.	 However, many prior studies have emphasized 
deep learning or image-based modalities that require 
high computational resources and extensive datasets. 
While powerful, such models often lack interpretability 
and are not always practical for clinical or low-resource 
settings. Moreover, studies that leverage behavioral 
questionnaires have usually limited their analyses to 
basic classification without comprehensive feature 
ranking or interpretability assessment.

4.	 This study introduces an interpretable, resource-
efficient, and high-performing ASD screening framework 
that objectively identifies the most influential behavioral 
predictors using classical machine learning models. By 
combining ensemble (Gradient Boosting) and kernel-
based (SVM) classifiers with rigorous feature-ranking 
techniques (Information Gain, Gain Ratio, Chi-Square, 
and Gradient Boosting Feature Importance), this 
research provides a balanced trade-off between predictive 
accuracy and model transparency. Unlike prior studies 
that relied on image-based datasets [22], IoT-based 

emotion recognition [23], or explainable deep learning 
models [24], our work focuses on behavioral screening 
using the Q-Chat-10 questionnaire.

5.	 The main objectives and contributions of this 
study are as follows:

•	 Novel integration of classical ML algorithms 
with multi-criteria feature selection, enhancing 
interpretability and robustness in behavior-based 
ASD detection.

•	 Comprehensive feature importance analysis, 
objectively identifying key behavioral traits (A9, 
A7, A5, and A6) that significantly influence ASD 
prediction.

•	 Comparative evaluation of three complementary 
classifiers—Gradient Boosting, SVM, and 
Naïve Bayes—demonstrating that lightweight 
ensemble and kernel-based methods can achieve 
accuracy comparable to deep learning while 
maintaining interpretability.

•	 Clinical and practical relevance, offering a 
transparent and computationally efficient 
screening framework that can be adapted to 
assist clinicians and policymakers in early 
ASD detection, especially in resource-limited 
environments.

•	 By addressing gaps in interpretability, 
accessibility, and behavioral focus, this research 
contributes a methodologically sound and 
practically viable solution for enhancing ASD 
screening and early diagnosis.

2.	 METHOD
2.1	 Dataset
1.	 The dataset used in this paper results from an 

autism screening of toddlers, which includes influential 
features for further analysis, particularly in determining 
autistic traits and improving the classification of ASD 
cases. This dataset contains 1,054 instances and 18 
attributes, including the target variable. The dataset 
comprises 1,054 instances, with a balanced distribution 
between ASD and non-ASD cases (approximately 50.3% 
and 49.7%, respectively). Data preprocessing included 
binary encoding, handling of missing values, and 
stratified 10-fold cross-validation to mitigate imbalance.
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Table 1. Feature descriptions. 

Feature Type Description 
A1 Binary (0, 1) Does your child respond by looking at you when you call their name?
A2 Binary (0, 1) How easily can you establish eye contact with your child?

A3 Binary (0, 1) Does your child use pointing gestures to express a desire for something? (e.g., a toy that is 
out of reach) 

A4 Binary (0, 1) Does your child want to share something they find interesting with you? 
A5 Binary (0, 1) Does your child engage in pretend play? (e.g., care for dolls, talk on a toy phone) 
A6 Binary (0, 1) Have you noticed if your child pays attention to what you’re looking at?

A7 Binary (0, 1) If someone in your family feels down, does your child try to comfort them? (e.g., stroking 
hair, hugging them)

A8 Binary (0, 1) Would you describe your child’s first words as: 
A9 Binary (0, 1) Does your child make use of basic gestures? (e.g., wave goodbye) 
A10 Binary (0, 1) Does your child gaze into space without any apparent purpose? 

Target variable Binary (Yes, No) Yes (ASD traits) or No (no ASD traits)

2.	  Attributes A1- A10: These items are part of 
the Q-Chat-10, where possible answers to questions 
are “Always,” “Usually,” “Sometimes,” “Rarely,” and 
“Never.” These responses are mapped to binary values 
(“1” or “0”) in the dataset. For questions 1-9 (A1- A9), 
if the response is “Sometimes,” “Rarely,” or “Never,” 
a value of “1” is assigned. For question 10 (A10), a 
response of “Always,” “Usually,” or “Sometimes” results 
in a “1” being assigned. A cumulative score of more than 
3 across all 10 questions indicates potential ASD traits; 
otherwise, no ASD characteristics are observed.

3.	 The remaining Features are collected from 
the ASDTests application [12]. The target variable is 
assigned automatically based on the score obtained by 
the user during the screening process using the ASDTests 
application.

2.2	 Feature Importance Analysis
1.	 This section details the methodology employed 

to identify the most influential behavioral features in 
predicting ASD traits within the Q-Chat-10 dataset. 
Feature selection is crucial for building parsimonious 
and interpretable models while mitigating the risk of 
overfitting.

2.	 Several feature ranking methods were utilized to 
evaluate the importance of each feature:

•	 Information Gain: This metric quantifies the 
reduction in uncertainty about the target variable 
(ASD traits) achieved by knowing the value 
of a particular feature. Features with higher 
Information Gain are deemed more informative 
[14].

•	 Gain Ratio: A normalized version of Information 
Gain that addresses the bias toward features with 
many values [14].

•	 Gini Index: Measures the impurity of a node in 
a decision tree, with higher values indicating 
greater impurity. Features that effectively reduce 
Gini impurity are considered more critical [15].

•	 Chi-Square Test (χ²): Evaluates the statistical 
dependence between a feature and the target 
variable. Higher χ² values suggest stronger 
associations.

•	 Gradient Boosting Feature Importance: Derived 
from the Gradient Boosting algorithm, this 
metric reflects the contribution of each feature to 
the model’s predictive performance [16]. 

Table 3. Features Ranks

Features Information gain Gain ratio Gini Index χ² Gradient Boosting
 A9 0.278 0.278 0.142 179.324 14.666
 A7 0.229 0.245 0.136 117.035 11.546
 A5 0.252 0.252 0.136 158.969 11.228
 A2 0.174 0.175 0.092 124.8 10.858
 A6 0.246 0.25 0.139 144.613 10.5
 A1 0.191 0.193 0.108 116.759 9.714
 A8 0.144 0.144 0.078 104.003 9.467
 A4 0.199 0.199 0.109 131.189 9.284
 A10 0.023 0.024 0.014 14.1 6.437
 A3 0.137 0.141 0.072 105.916 5.699
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Table 3 and Figure 2 provide a summary of the feature 
ranking results. While A9, A6, A7, and A5 emerged as the 
most prominent predictors, the remaining features (A10, 
A8, A4, A3, A2, and A1) also exhibited varying predictive 
power. Although lower than the top four, their rankings 
suggest potential contributions to ASD prediction.  
Features such as Jaundice, Sex, family_mem_with_ASD, 
and Ethnicity demonstrated minimal predictive power. 
The observed rankings provide valuable insights into the 
relative importance of different behavioral features in 
predicting ASD traits.

3.	

Figure 2. Information Gain Feature Importance Ranking

4.	

Figure 3: Gradient Boosting Feature Importance Ranking

The feature importance analysis summarized in Table 
2, Figure 2, and Figure 3 highlights key predictors of ASD 
traits within the Q-Chat-10 dataset. Features A9, A7, 
A5, and A6 consistently emerged as the most influential 
predictors across multiple ranking methods, indicating 
their strong relevance to ASD prediction. Features A2, 
A1, A8, and A4 showed moderate predictive power, 
while A10 and A3 ranked lowest, contributing minimal 
influence. Figure 2 emphasizes the dominance of A9, A7, 
and A5 in the Information Gain ranking, while Figure 
3 further confirms their significance through Gradient 
Boosting Feature Importance scores. These findings 
highlight the importance of communication gestures and 
social responses in accurately predicting ASD traits.

2.3	 ML-based Toddler ASD predictive models
Machine learning (ML) techniques have shown 

promising results in the early detection of several diseases 
and disorders, including autism spectrum disorder (ASD) 
in young children. In this research, we applied many 
machine learning methods, including:

• Gradient Boosting is a machine learning technique 
used for regression and classification tasks. It creates a 
strong predictive model by combining multiple weak 
learners, usually decision trees, into an ensemble. The 
algorithm works iteratively, adding one tree at a time and 
adjusting subsequent trees to correct the errors of earlier 
ones [18]. Key features of this classifier include:

Maximum Number of Trees: This hyperparameter 
is used to determine the number of trees; the more trees 
there are, the better the performance of the classifier.  
Learning Rate: This hyperparameter minimizes the 
contribution of each tree.Replicable Training: Fix the 
random seed to enable the replicability of the results.

• Support Vector Machines (SVM): Support 
Vector Machine (SVM) is a supervised learning method 
employed for classification and regression tasks, though 
it is primarily utilized in classification scenarios. The 
primary objective of SVM is to determine the optimal 
boundary, known as the hyperplane, that effectively 
separates the classes within the feature space. This 
hyperplane is positioned to maximize the gap between 
it and the nearest data points from each category. These 
nearest points are referred to as support vectors. SVM 
was chosen due to its strong performance on small-to-
medium datasets with high-dimensional features, while 
Naïve Bayes provides a probabilistic baseline. LSTM 
and attention-based models, though powerful, were not 
selected as the dataset is relatively small and sequential 
dependencies are limited in Q-Chat-10 responses.

In two-dimensional space, a hyperplane functions as 
a line that divides data into two categories, while in three 
dimensions, it appears as a plane. As the dimensionality 
increases, it assumes a more abstract form. The goal 
is to identify the hyperplane that most effectively 
separates the classes, maximizing the distance between 
this boundary and the closest data points, referred to as 
support vectors, which play a crucial role in defining the 
decision boundary. The margin, defined as the distance 
between the hyperplane and these support vectors, is also 
maximized to enhance classification accuracy. When 
the data is not linearly separable, the kernel trick can be 
utilized to shift the original feature space into a higher 
dimension. This transformation permits linear separation 
using kernel functions such as linear, polynomial, radial 
basis function, and sigmoid, each offering distinct data 
mappings [18].
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• Naive Bayes: The Naïve Bayes algorithm is a 
well-established probabilistic classifier that leverages the 
concept of probability to solve classification problems 
straightforwardly and efficiently. By applying the 
principles of Bayes’ theorem, this method learns the 
likelihood of individual items, their attributes, and the 
categories to which those attributes correspond. It operates 
within a supervised learning framework, categorizing new 
instances by assigning them to the class with the highest 
probability of membership. The classification process 
involves two key stages: A) Training phase: During this 
stage, the algorithm calculates the probability distribution 
based on the training data. B) Prediction phase: For a test 
instance, it assesses the posterior probability for that 
unknown sample, determining its most likely class based 
on the highest posterior probability, known as Maximum 
A Posterior (MAP) [19].

2.4	 Hyperparameter Tuning 
A hyperparameter-tuning process optimized the 

performance of each machine learning model. Due to 
computational limitations, manual tuning was conducted. 
The key hyperparameters and their tuning strategies are 
described below:

Gradient Boosting: Maximum Number of 
Trees: This hyperparameter was manually adjusted to 
determine the number of trees in the ensemble. Higher 
values generally improve performance but can also lead 
to overfitting. Values ranging from 100 to 200 were 
tested, with a focus on identifying a balance between 
performance and computational efficiency.

Support Vector Machines (SVM): Kernel: Given 
the nature of the data, the radial basis function (RBF) 
was evaluated. gamma constant in kernel function(g): 
was auto tuned. The recommended value is 1/k, where 
k is the number of attributes. SVM was chosen due to 
its strong performance on small-to-medium datasets with 
high-dimensional features, while Naïve Bayes provides a 
probabilistic baseline. LSTM and attention-based models, 
though powerful, were not selected as the dataset is 
relatively small and sequential dependencies are limited 
in Q-Chat-10 responses.

Naive Bayes: The provided text doesn’t mention any 
specific hyperparameter tuning for Naive Bayes. 

To ensure robust and generalizable results, we 
evaluated the performance of each machine learning 
model using a 10-fold cross-validation approach. This 
technique helps mitigate overfitting and provides a more 
reliable estimate of model performance on unseen data. 
In 10-fold cross-validation, the dataset is divided into 
10 folds. The model is trained on 9 folds and tested on 
the remaining fold, repeating this process 10 times, each 
serving as the test set once. The reported performance 

metrics (AUC, Accuracy, F1 Score, Precision, Recall, and 
MCC) represent the average performance across these 
10 folds. This approach provides a more comprehensive 
assessment of the models’ ability to generalize to new 
data compared to a single train-test split.

3.	 RESULTS AND DISCUSSION
3.1	 Predictive Performance Analysis
The predictive performance of the three machine 

learning models—Gradient Boosting, Support Vector 
Machine (SVM), and Naïve Bayes—was rigorously 
evaluated using stratified 10-fold cross-validation to 
ensure robustness and generalization. Evaluation metrics 
included the Area Under the Curve (AUC), Accuracy, F1-
Score, Precision, Recall, and the Matthews Correlation 
Coefficient (MCC). Table 4 summarizes the results.

Table 4: Model’s performance Metrics

Classifier AUC Accuracy F1-
Score Precision Recall MCC

Gradient 
Boosting 0.999 0.980 0.980 0.980 0.980 0.953

SVM 0.998 0.976 0.976 0.976 0.976 0.944
Naïve 
Bayes 0.997 0.961 0.962 0.964 0.961 0.914

The results indicate that all three classifiers achieved 
robust predictive performance, with Gradient Boosting 
exhibiting the highest accuracy (98.0%) and AUC (0.999). 
The SVM model followed closely (accuracy = 97.6%, 
AUC = 0.998), while Naïve Bayes also demonstrated 
competitive results (accuracy = 96.1%, AUC = 0.997) 
despite its relatively simple probabilistic framework. 
These findings highlight the effectiveness of ensemble 
and kernel-based learning approaches in modeling 
behavioral data for ASD prediction.

When compared with previously published 
studies using similar datasets, the proposed approach 
demonstrates advancements in predictive accuracy. For 
instance, Rashed et al. [1] reported accuracies ranging 
from 96 to 98% using Random Forest and Logistic 
Regression. In contrast, Alzakari et al. [2] achieved 97.3% 
accuracy with explainable AI models based on optimized 
decision trees. In contrast, the proposed Gradient 
Boosting model achieved 98.0% accuracy with an AUC 
of 0.999, reflecting improvement in generalization 
performance while preserving model interpretability. This 
enhanced outcome is primarily attributed to the model’s 
optimized hyperparameter configuration and ensemble 
learning architecture. The near-comparable performance 
of the SVM further reinforces its robustness in capturing 
complex, high-dimensional behavioral interactions 
characteristic of ASD screening datasets [19].
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Table 5 presents a comparative summary of the proposed models’ performance relative to prior machine learning 
approaches from the literature.

Table 5. Comparative summary of the proposed models

Study / Model Dataset Technique Accuracy (%) Remarks

Tabtah (2017) [3] Q-Chat-10 Decision Tree 92.0 Early behavioral model; limited 
feature selection

Thabtah et al. (2018) [7] Q-Chat-10 Random Forest 96.8 Strong baseline; moderate 
interpretability

Heinsfeld et al. (2018) 
[5] ABIDE Deep Neural Network 97.0 High accuracy; requires 

neuroimaging data
Alzakari et al. (2024) 

[2] Hybrid dataset Explainable AI (XAI) 97.3 Interpretable; higher computational 
cost

Proposed (2025) Q-Chat-10 Gradient Boosting + 
Feature Ranking 98 Highest accuracy; interpretable and 

lightweight

The comparative findings indicate that the proposed 
Gradient Boosting model, when integrated with feature-
ranking techniques, demonstrates strong and consistent 
predictive performance, maintaining a high level of 
interpretability compared to existing ASD screening 
approaches. Unlike previous studies that depend on large 
or multimodal datasets (e.g., ABIDE MRI data), the 
present framework relies solely on behavioral indicators 
derived from the Q-Chat-10, making it more feasible and 
scalable for use in both clinical and community-based 
screening environments. The promising performance 
of the proposed framework can be attributed to the 
following factors. First, a rigorous feature selection 
process combining Information Gain, Gain Ratio, Chi-
Square, and Gradient Boosting importance was employed 

to retain only the most informative behavioral indicators. 
Second, the use of a balanced dataset (50.3% ASD vs. 
49.7% non-ASD) and 10-fold stratified cross-validation 
enhanced generalizability and minimized class imbalance 
bias. Third, the ensemble learning structure of Gradient 
Boosting effectively modeled complex, non-linear 
relationships among key behavioral traits—particularly 
A9 (gestures), A7 (empathy behaviors), and A5 
(pretend play)—which are established markers of ASD-
related social interaction [7], [9]. Finally, the model’s 
interpretability aligns with prior behavioral psychology 
findings [3], [9], reinforcing its empirical soundness and 
clinical relevance.
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Figures 3–8. Visualization of feature importance and class separation across Gradient Boosting,
 SVM, and Naïve Bayes models.



8

Gamal Saad Mohamed Khamis: Optimizing Autism Spectrum Disorder Screening with Machine Learning:  
Identifying Key Behavioral Predictors and Model Performance	 16-9

3.2	 Discussion of Potential Biases and Limitations
Although the proposed framework demonstrated 

high predictive accuracy (96%, 97% and  98%) and 
strong generalization, several limitations warrant 
acknowledgment. The dataset, obtained from a single 
online source (ASDTests), may introduce cultural and 
demographic bias, as behavioral interpretations such as 
“pretend play” or “comforting behavior” can vary across 
populations. Moreover, the binary encoding of Q-Chat-10 
responses, while computationally efficient, may reduce 
behavioral nuance.

To mitigate potential overfitting, the study 
employed stratified 10-fold cross-validation and multi-
criteria feature selection (Information Gain, Gain 
Ratio, Chi-Square, and Gradient Boosting importance), 
which enhanced model stability and interpretability. 
Nevertheless, validation using independent and more 
diverse datasets is necessary to confirm the robustness of 
these findings.

Although Gradient Boosting and SVM achieved 
high accuracy, their decision-making processes remain 
partially opaque, highlighting the need for future 
integration of explainable AI (XAI) frameworks to 
enhance clinical interpretability and trust. Additionally, 
the absence of direct collaboration with clinicians in 
this phase limits immediate clinical applicability; such a 
partnership will be prioritized in future work to ensure 
practical validation and usability.

4.	 CONCLUSION 
This study demonstrates the effectiveness of 

machine learning techniques, particularly Gradient 
Boosting, Support Vector Machines, and Naïve Bayes, 
in accurately predicting Autism Spectrum Disorder 
(ASD) using behavioral data from the Q-Chat-10 dataset. 
Through comprehensive feature selection and ranking, 
the analysis identified key behavioral predictors A9 
(gestures), A7 (empathy), and A5 (pretend play) that 
consistently influenced ASD classification, highlighting 
their diagnostic relevance.

The proposed models achieved high accuracy and 
interpretability, offering a computationally efficient and 
clinically practical framework for early ASD screening. 
While results are promising, the study acknowledges 
limitations related to dataset representativeness and 
binary encoding, which may affect generalizability. These 
challenges were mitigated through cross-validation and 
rigorous feature selection, ensuring robust performance.

Future work should extend model validation across 
diverse and longitudinal datasets, incorporate multimodal 
behavioral and physiological data, and integrate 
explainable AI (XAI) techniques to enhance transparency 
and clinical adoption. Overall, the findings emphasize 
the potential of interpretable ML models to support 
early, data-driven, and accessible ASD diagnosis in both 
research and healthcare settings.
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