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Abstract : There is a variety of technics for solving Two-Stage Stochastic Programming Problems. Recently the
two-stage stochastic problem has been solved by the successive quadratic regression approximations. Here, we
solve the two-stage stochastic problems by using the exponential regression instead of the quadratic one, then we
build the algorithm of successive exponential regression approximations (SERA). Successive exponential
regression approximations (SERA) procedure has been improved to solve two-stage stochastic problems by using
the same technic of successive quadratic regression approximations where we replace the exponential regression
function instead the quadratic regression function in which is replaced instead the expected recourse function of
second stage problem which is hard to evaluate numerically, then we compute exponential regression. So the
algorithm is used to solve large-scale of multi-stage problems. Also, the new algorithm is solving two-stage

problem by using exponential regression approximations which is convergent.
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1. Introduction

Stochastic programming, or called optimization
under uncertainty, is an optimization problem
formulated mathematically with  stochastic
systems, where random variable parameters appear
in objective functions or in the constraints.
Uncertainty is dealt with random parameters in
objective both.

(Prekopa,1995) shows a numerical example of a

or constraints, or in
large-scale size of uncertainty problem.

Dynamic Stochastic programming models or static
models are decision making problems where the
equations are stochastics, (Prekopa, 1995) use a
model where some or all of the parameters are
random by considering of joint distribution
function, for further details see (Prekopa, 1995;
Deak, 2001; Deak, 2004; Deak, 2006; Deak, 2011;
Shapiro, Dentcheva and Ruszczynski, 2009). Two
stage stochastic problem see (Nasser Alreshidi et
al., 2020; Rashid Nawaz et al., 2020) they show
decomposition method which give quickly

convergent and and encouraging results.
Convergence of Krasnoselskii-Mann for more de-
tails see (Shah, 2022; Nawaz, 2020).

There are many real applications of two-stage
models that done in many fields of DM such as
Accident prediction models (Chao Wanget et al.,
2011). Transportation problem (Hrabec et al.,
2015). Outages of power plants (Cot’e and
Laughton, 1982). Food supply chain (Bryndis

Stefansdottir and Mar- tin Grunow 2018). Portfolio

minc’x + Q(x) subject to Ax

Where  Q(x) = E(q(x, &) = E(miny,q"y|W, =
& — Tx,y = 0) and the vector

x € R™and y € R™are denoted for first-stage
decisions and the second-stage decision variable,
respectively.  All  the
deterministic A, T, W and the dimensions are

matrices here are

my Xny, my Xny, my Xn, respectively, for the
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optimization (Nasser Alreshidi et al., 2020).
Energy models (Jo™ao Soares et al., 2017). Airline
network (Yang T.H., 2010). Staffing and
Scheduling (Kibaek Kim and Sanjay Mehrotra.,
2015). Biomass supply chain networks (Maria
Aranguren et al., 2021). Water resources problems
(Wang and Huang., 2015). Milk production
(Yalcin and Stott., 2000). Risk
(Zimmerman and Carter., 2003). Two-stage
stochastic programming with recourse is the most

problems

important and most used model in stochastic
programming (Prekopa, 1995; Bryndis
Stefansdottir and Martin Grunow, 2018). Recently
this
regression

Deak developed a heuristic algorithm,
procedure called
approximations or SRA that is for solving the two-
stage and probabilistic stochastic programming

successive

problems. The expected recourse function of the
second stage problem (A. Ruszczynski and A.
Shapiro, 2003), frequently cannot be evaluated
accurately but some Monte Carlo techniques can
compute them. The algorithm is based on replacing
the expected function, which is
numerically hard to be solve by the regression

recourse

function then solving this problem by this heuristic
technique, see (Deak, 2001; Deak, 2004; Deak,
2006; Deak, 2011). Deak describes the SRA
algorithm for tow stage stochastic programming
stochastic

problem as following. Two-stage

programming with expected recourse:

=b, x=0 @))

other vectors are deterministic b € R™* and q €
R™ except & € R™t the righthand side vector is
random. In the SRA algorithm, he assumed [5],
that & is uncertain with normal distribution and the
problem has complete recourse to guarantee that
the second stage problem is feasible which, means
that for any x and any & there exists y feasible
solution and the second stage linear programming
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problem has a finite optimal solution, which means
Vx x,&the q(x, &) is less than oo, The difficult part
is to compute the expected recourse function
because of the multidimensional integral but it is
easy to give an unbiased estimate of it. Let
fll fZJ [ fk
distribution of the random ¢ that is for each point

x; then

q; = % k q(x;, &) is an unbiased estimate of the

to be independent samples from

expected recourse function Q(x) and ¢ are
independent samples. The SRA algorithm
computes this estimated function value and
constructs a quadratic approximation based on g;.
To start the SRA algorithm, we need to make

min
Dy, by,

by the first order necessary conditions of (2), the
solutions for the unknown parameters are giving
by:
Zf:l[cllci — (*'iDyx; + b'yx; + )] = 0
Yicilai — (X' iDpx; + b'ix; +

MA=m, A=M1m,

Where A’ =
(dlll dlz, ey dln' dzz, ey dzn ) d33, ey dnn,
dy, ...,d,, ¢) and the

m =

random initial points x; and compute for each point
of x; an unbiased estimate q; of Q(x;)which is
linear programming problems that is q;.Q(x;).
Then, we have the set S, = {x;,¢;}’_, and the
quadratic regression function of this form:

G(x) =x'Dx+ b’ + ¢,

is replaced instead the expected recourse function
Q(x) which is hard to evaluate numerically, Where
D, is a assumed to be symmetric matrices and
Dy, by, ¢, are unknown parameters can be
computed from the optimization problem:

Yialg — (' iDyx; + b'ix; + ¢ ()

c)xim =0, m=1,...,n.

Yiilgi — (i Dyex; + b'iex; +
c)lximxiy =0,1=1,...,n,
where X;,, is the mth component of the vector x;.
Furthermore, we can rewrite the system (2-2)

3)

_ 15k —
M3,mlr - ;Zizl XimXi1Xir and M4,mlrs -

1¢k
;Zi:1 XimXiXirXis
"These notations used to describe the matrix M and

by solving the system (3), so the solution of
problem (2) will obtain.

(M2,11, M2,12, s Mo 10, M,12, M2 22 s Mo » Ma,1, M1, Fhes YR A algorithm for two-stage problem which

my ) and the component of m are:

my = %Zi'(:l qi, Mym = %Z?:l qi Xim» Mo =
%Zlfq i XimXit»

And the elements of the matrix M are defined as:
My = %Z?:lxiom =1, -

_ k
Ml,m - ;Zizl Xim»
_ 15k
My = ;Zi:1 XimXils

qGr(x) =x'Dyx + b’y + ¢,

from S, by solving the minimization problem (2).

introduced by (Deak, 2004) is giving as following:
[Initialization.] Set the iteration counter to

the number k of points and compute q;~Q(x;)
and S, = {x;, q;}1;.

1. Compute the coefficients of Dy, by and c; of

the quadratic regression function

(4)

2. Replace the original first stage problem with the
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following approximate one:
min

=c'x+ q(x)

®)

Ax <D

and denote its optimal solution by x.

3. If x, is "good enough" then STOP,
otherwise compute q,~Q(x;), let Sp,q =S U
{x1, qi} increasek = k + 1 and go back to Step 1"
(Deak , 2004), the above algorithm was described
and approved theoretically by (Deak, 2004).

The most recent development in the solution of
two-stage model with probabilistic constraint is a
heuristic ~ approach  (successive  regression
approximations (SRA) proposed by (Deak, 2003)
for medium-size problems, which is extended for
large scale problem with one hundred decision
in the 120
dimensional normally distributed & in the second

variables and first-stage with
stage problem (Deak, 2011), where he claims that
the computational test indicates that the method is
working. However, no theoretical proof of the SRA
method exists but the performance has been
efficient for more details see (Deak, 2002; Deak,
2003; Deak, 2006). Q(x)=E(q(x,¢) =

y; =aeb¥i for i=1,2,..

where o and  are unknown constants. In order to
give the best approximation for the function g; we

min
a, p 2i=lgi = yil?

Apply the natural logarithm for both sides of Eq.
(6) then we obtain
Iny; = In(a ef¥) = Ina + fx;

min

a,[fz

n
i=1

Hence, we will solve the minimization problem
(8) that is associated to the pints (x;, f;) fori =

x=>0

[fi — (v + Bx;]?
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E(miny,q"y|W, = ¢ —Tx,y =2 0) where q is a
random variable and we assume that the matrices
T and W are deterministic. The main difficult
computationally is computing the value of the
expected when the being
multidimensional integral is hard to calculate the

recourse

expected value. It is easily computed for any x and
&; by unbiased estimate of it:

2. Computing a Least Squares-
Regression for Exponential
Approximation

Assume that we have k distinct points, for
instance(xy, Y1y, .- (X, Yk)) and we need to
interpolate a function g; = g(x;) such that g;
y; for all

i =1,...,k Consider we need to an interpolation
for these points that satisfy the exponential
function, i.e.,

(6)

shall solve the least square problem (L? minimum
norm), that is,

(M

Let f; = Iny; and y = Ina, then the least square
problem (7) can be transformed into

®)

1, ..., k, then, we will obtain the solution of the
minimization problem (7) by using & = exp(y).
By differentiating (8) with respect to y and f3,
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respectively, and putting the derivatives equal to (M 2 M 1) (ﬁ ) _ (m1)
zero. Then we have M, My)\y My
. -m
Ylfi—-+Bx]=0 Thus, we obtain B = %}\Enl, and y=
L —MoMy-mq M4
in[fi —(+px]=0 My—M?2
i=1 Furthermore, the solution of the minimization
By solving the above system in the unknowns problem (7) is given by
constants y and B following the
same technique as given by [4] consider _ kB xilnyim B, B XY and
kzl l - Zl l)
— Z 1 f'u m1 = y 1 ( 1%
1vk
;Zi:lfi Xir = exp - ?:1 Xi Zz 1% Iny; + Z =1 lny; ?:1xi2
Yk x? — (T x;

MOZ_Zz X =1, __lexl' M, = s ( = l)

Zl 1 x“ 3. Multidimensional SERA

Consider we have k distinct points x;, b € R" for
i=1,2,..,k. We need an interpolate these points
such that satisfies the exponential function

Then, we can rewrite the system (3-3) as follows
BM, +yMy =my, BM; +yMy =m,, that is

y; = ael* fori=1,2,..,k (9)

where o and b are unknown constants. Similarly fi = Iny; and y = Ina, then by solving the
as for the previous simple case, by taking the following minimization problem we can compute
logarithm for both sides of Eq. (9). Assume that the L? minimum norm, that is
mln )
Yisilfi — (v + b'x]? (10)
for the unknown constant y and b. By = Z o fi my= % f: 1 %iif 0

differentiating (10) with respect to y and b,
respectively. Then we obtain Y1, [f; — (y + 1
b’x] = O, e j = Zl 1x Ml,j = ;Z;{:l Xij, and
Z?:l xij[fi — (]/ + bIX] = 0, fOI'j = 1, 2, e, n, leﬂ = kZi=1 xi]'xil,

where x;; is the j — th component of the vector

x;. Following [5], we consider the following Furthermore we can rewrite the above system as

. follows
notations,
MA =m, (11)
where Ais the vector of the unknown constants, Myq11 -+ Myin My,
N = (bq,...,b,), and M= oo : :
and the vector m and the matrix and M are defined T\ Myp1 ot Mapn My,
by My, - My, M,

m=(myy, .My, m) obtain the solution of the minimization problem

(10).
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4. SERA Algorithm for the Two-Stage
Problem

The two-stage programming with recourse can be

minc’x + Q(x) subjectto Ax=b, x =0

where the expected recourse function Q(x) can be
giving as

Q(x) = E(q(x,§) = E(minyq"y|W, = ¢ -
Tx,y = 0) where q is a random variable and we
that T and W are

assume the matrices

q; =qx &) =ming"y st

We can easily compute the expected recourse
E(q(x,£&)) = by given an unbiased estimate of it.
Let &;to be independent sample with the random
variable &, for each x; then q; = q(x;,¢;) and
qi~Q(x;) for i =1,2,..,k. Inthis case:

— bryx
qx = are” *

To find the solution for the unknown «;, and by, by
solving the following minimization problem, we

min
v,b Yicalai — qe(x)]?

Since this is a minimization problem then the first
order necessary conditions of the above problem

give the solution of the unknown a;, and by :
k

Z[Qi — (i +b'x;] =0,

i=1
Z?:l xij[qi - (]/k + b,xi] = 0, ] = 1, 2, ,k
where x;; is the j — th component of the

Qi (%) = ajebx

Tx+ Wy =¢,
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written as:

(12)

deterministic. The main difficult computationally
is computing the value of the expected recourse
when the being multidimensional integral is hard
to calculate the expected value. It is easily
computed for any x and §;by unbiased estimate of
it:

y=0 (13)

q;i = %Zi‘(:l
independent samples of ¢.

The expected recourse function is replaced by a
for  exponential

q(x;,&;) are unbiased estimates and

least  squares-regression

approximation regression function of the form:

(14)

k

can compute the L? minimum norm, that is

(15)

vector x; and y = Ina for more details see
previous section.
For starting our algorithm we need to generate
random k points of x; and calculate q; for these
points. Thus giving the set S, = {x;, q;},
0. [start] let the iteration being with the number k
of points in Sy.
1. Then, compute the following coefficient b, and
a;, of exponential regression function

(16)
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from S, by solving the minimization problem
15).
(2. : Replace first-stage problem by the following
approximate problem:
M= cxt g
(17)
Ax <D
x=0
And the solution denoted by x;,
3. If x, is “optimal”, then the solution found,
otherwise generate a sample for &
and calculate g, ~Q(x;,) and add it to the
previous set that is, Si,.; = S U {x, qi.}
by increasing the number f iteration k ==k + 1
and go back to the second step.

6. Conclusion

Stochastic programming has gained a major of
optimization for modeling uncertainties in
mathematical optimization problems. Two-stage
stochastic programming with random is dealing the
problem under uncertainty in models, and use
optimization concepts optimization along with
statistics and probability. stochastic programming
continues develop a huge of algorithm and
theoretical by researchers and scientists. In this
paper, we build the algorithm of two stage problem
which we name it successive exponential
regression approximations (SERA) to solve the
two-stage stochastic programming for both one-
dimension and multidimensional. The algorithm
for solving a two-stage model with probabilistic
constraint (successive exponential regression
approximations (SERA)) was proposed based on
replacing the expected recourse function, which is
numerically hard to be solve by the regression
function then solving this problem by this
technique. So by this idea we can solve any two
stage Stochastic programming. For future work we
will use real application data to with successive
exponential regression approximations (SERA).
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