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Abstract  : There is a variety of technics for solving Two-Stage Stochastic Programming Problems. Recently the 
two-stage stochastic problem has been solved by the successive quadratic regression approximations. Here, we 
solve the two-stage stochastic problems by using the exponential regression instead of the quadratic one, then we 
build the algorithm of successive exponential regression approximations (SERA). Successive exponential 
regression approximations (SERA) procedure has been improved to solve two-stage stochastic problems by using 
the same technic of successive quadratic regression approximations where we replace the exponential regression 
function instead the quadratic regression function in which is replaced instead the expected recourse function of 
second stage problem which is hard to evaluate numerically, then we compute exponential regression. So the 
algorithm is used to solve large-scale of multi-stage problems. Also, the new algorithm is solving two-stage 
problem by using exponential regression approximations which is convergent. 
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1. Introduction 
 
Stochastic programming, or called optimization 
under uncertainty, is an optimization problem 
formulated mathematically with stochastic 
systems, where random variable parameters appear 
in objective functions or in the constraints. 
Uncertainty is dealt with random parameters in 
objective or constraints, or in both.   
(Prekopa,1995) shows a numerical example of a 
large-scale size of uncertainty problem. 
Dynamic Stochastic programming models or static 
models are decision making problems where the 
equations are stochastics, (Prekopa, 1995) use a 
model where some or all of the parameters are 
random by considering of joint distribution 
function, for further details see (Prekopa, 1995; 
Deak, 2001; Deak, 2004; Deak, 2006; Deak, 2011; 
Shapiro, Dentcheva and Ruszczynski, 2009). Two 
stage stochastic problem see (Nasser Alreshidi et 
al., 2020; Rashid Nawaz et al., 2020) they show 
decomposition method which give quickly 
convergent and and encouraging results. 
Convergence of Krasnoselskii–Mann for more de- 
tails see (Shah, 2022; Nawaz, 2020). 
There are many real applications of two-stage 
models that done in many fields of DM such as 
Accident prediction models (Chao Wanget et al., 
2011). Transportation problem (Hrabec et al., 
2015).  Outages of power plants (Cot´e and 
Laughton, 1982). Food supply chain (Bryndis 
Stefansdottir and Mar- tin Grunow 2018). Portfolio 

optimization (Nasser Alreshidi et al., 2020).  
Energy models (Jo˜ao Soares et al., 2017).  Airline 
network (Yang T.H., 2010). Staffing and 
Scheduling (Kibaek Kim and Sanjay Mehrotra., 
2015). Biomass supply chain networks (Maria 
Aranguren et al., 2021). Water resources problems 
(Wang and Huang., 2015). Milk production 
problems (Yalcin and Stott., 2000). Risk 
(Zimmerman and Carter., 2003). Two-stage 
stochastic programming with recourse is the most 
important and most used model in stochastic 
programming (Prekopa, 1995; Bryndis 
Stefansdottir and Martin Grunow, 2018). Recently 
Deak developed a heuristic algorithm, this 
procedure called successive regression 
approximations or SRA that is for solving the two-
stage and probabilistic stochastic programming 
problems. The expected recourse function of the 
second stage problem (A. Ruszczynski and A. 
Shapiro, 2003), frequently cannot be evaluated 
accurately but some Monte Carlo techniques can 
compute them. The algorithm is based on replacing 
the expected recourse function, which is 
numerically hard to be solve by the regression 
function then solving this problem by this heuristic 
technique, see (Deak, 2001; Deak, 2004; Deak, 
2006; Deak, 2011). Deak describes the SRA 
algorithm for tow stage stochastic programming 
problem as following. Two-stage stochastic 
programming with expected recourse: 
 

 
min 𝑐!𝒙 + 𝑄(𝒙)  subject to  𝐴𝒙 = 𝑏, 𝑥 ≥ 0	                     (1) 

 
 
Where 𝑄(𝒙) = 𝐸(𝑞(𝒙, 𝜉) = 𝐸(𝑚𝑖𝑛"𝑞!𝑦|𝑊# =
𝜉 − 𝑇𝒙, 𝑦 ≥ 0) and the vector  
𝒙 ∈ 𝑅$!and 𝑦 ∈ 𝑅$"are denoted for first-stage 
decisions and the second-stage decision variable, 
respectively. All the matrices here are 
deterministic A, T, W and the dimensions are   
𝑚% × 𝑛%, 𝑚& × 𝑛%,			𝑚% × 𝑛&	 respectively, for the 

other vectors are deterministic 𝑏 ∈ 𝑅'! and 𝑞 ∈
𝑅$" except ξ ∈ 𝑅'! the righthand side vector is 
random. In the SRA algorithm, he assumed [5], 
that ξ is uncertain with normal distribution and the 
problem has complete recourse to guarantee that 
the second stage problem is feasible which, means 
that for any 𝑥 and any ξ there exists y feasible 
solution and the second stage linear programming 
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problem has a finite optimal solution, which means 
∀𝑥  x, ξ the 𝑞(𝑥, 𝜉) is less than ∞. The difficult part 
is to compute the expected recourse function 
because of the multidimensional integral but it is 
easy to give an unbiased estimate of it. Let  
𝜉%, 𝜉&, … , 𝜉(  to be independent samples from 
distribution of the random 𝜉 that is for each point 
𝒙𝒊 then  
𝑞* =

%
(
∑ 𝑞(𝒙* , 𝜉*)(
*+%  is an unbiased estimate of the 

expected recourse function 𝑄(𝒙) and 𝜉 are 
independent samples. The SRA algorithm 
computes this estimated function value and 
constructs a quadratic approximation based on 𝑞* . 
To start the SRA algorithm, we need to make 

random initial points 𝑥* and compute for each point 
of  𝑥*  an  unbiased estimate 𝑞*  of  𝑄(𝒙*)which is 
linear programming problems that is  𝑞*~𝑄(𝑥*). 
Then, we have the set 𝑆( = {𝑥* , 𝑞*}*+%(  and the 
quadratic regression function of this form: 
 
𝑞((𝒙) = 𝒙′𝐷(𝒙 + 𝑏′( + 𝑐( 
 
is replaced instead the expected recourse function 
𝑄(𝒙) which is hard to evaluate numerically, Where 
𝑫(  is  a assumed to be symmetric matrices and  
𝑫(, 𝒃(, 𝑐( are unknown parameters can be 
computed from the optimization problem:  
                    

 
𝑚𝑖𝑛

𝑫( , 𝒃( , 𝑐(
=	∑ [𝑞* − (𝑥-*𝑫(𝒙* + 𝒃-(𝒙* + 𝑐()]&(

*+%                     (2) 

 
 
by the first order necessary conditions of (2), the 
solutions for the unknown parameters are giving 
by: 
          ∑ [𝑞* − (𝒙-*𝑫(𝒙* + 𝒃-(𝑥* + 𝑐()] = 0(

*+%  
                 ∑ [𝑞* − (𝒙-*𝑫(𝒙* + 𝒃-(𝑥* +(

*+%

𝑐()]𝒙*' = 0, 𝑚 = 1,… , 𝑛. 
                 ∑ [𝑞* − (𝒙-*𝑫(𝒙* + 𝒃-(𝑥* +(

*+%
𝑐()]𝒙*'𝒙*. = 0, 𝑙 = 1,… , 𝑛,  
where 𝑥*' is the mth component of the vector 𝑥* . 
Furthermore, we can rewrite the system (2-2) 

 
𝑴Ʌ = 𝒎,     Ʌ = 𝑴/%𝒎,                              (3) 

 

Where Ʌ- =

(𝑑%%, 𝑑%&, … , 𝑑%$, 𝑑&&, … , 𝑑&$	, 𝑑00, … , 𝑑$$,

𝑑%, … , 𝑑$, 𝑐	) and the 

 𝐦- =
(𝑚&,%%, 𝑚&,%&, … ,𝑚&,%$, 𝑚&,%&, 𝑚&,&&, … ,𝑚&,$$	, 𝑚%,%, 𝑚%,&, … ,𝑚%,$,
𝑚2	) and the component of  𝐦 are: 
𝑚2 =

%
(
∑ 𝑞* ,(
*+%  					𝑚%,' = %

(
∑ 𝑞* 	𝑥*',(
*+%   	𝑚&,'. =

%
(
∑ 𝑞* 	𝑥*'𝑥*. ,(
*+%  

And the elements of the matrix 𝑀 are defined as: 
𝑀2,' = %

(
∑ 𝑥*'2 = 1,(
*+%  	 	 	 	 	 𝑀%,' = %

(
∑ 	𝑥*',(
*+%   		

𝑀&,'. =
%
(
∑ 	𝑥*'𝑥*. ,(
*+%  

  		𝑀0,'.3 =
%
(
∑ 	𝑥*'𝑥*.𝑥*3 	(
*+% and 𝑀4,'.35 =

%
(
∑ 	𝑥*'𝑥*.𝑥*3𝑥*5	(
*+%  

"These notations used to describe the matrix M and 
by solving the system (3), so the solution of 
problem (2) will obtain. 
The SRA algorithm for two-stage problem which 
introduced by (Deak, 2004) is giving as following: 

0. [Initialization.] Set the iteration counter to 
the number  𝑘 of points and compute  𝑞*~𝑄(𝒙*) 
and 𝑆( = {𝒙* , 𝑞*}*+%( . 

1. Compute the coefficients of  𝑫( , 	𝒃( and 	𝑐( of 
the quadratic regression function 

	
𝑞((𝑥) = 𝒙′𝑫(𝑥 + 𝒃′( + 𝑐(                                           (4) 

 
from  𝑆( by solving the minimization problem (2). 

 
2. Replace the original first stage problem with the 
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following approximate one:                                     
𝑚𝑖𝑛
𝒙 = 𝑐-𝒙 + 𝑞((𝒙)	                          (5) 

𝐴𝒙 ≤ 𝑏 
𝑥 ≥ 0 

and denote its optimal solution by 𝒙( . 
3. If  𝒙( is "good enough" then STOP, 

otherwise compute 𝑞(~𝑄(𝒙(),	 let 𝑆(6% = 𝑆( ∪
{𝒙( , 𝑞(} increase𝑘 ≔ 𝑘 + 1 and go back to Step 1" 
(Deak , 2004), the above algorithm was described 
and approved theoretically by (Deak, 2004). 
The most recent development in the solution of 
two-stage model with probabilistic constraint is a 
heuristic approach (successive regression 
approximations (SRA) proposed by (Deak, 2003) 
for medium-size problems, which is extended for 
large scale problem with one hundred decision 
variables in the and first-stage with 120 
dimensional normally distributed ξ in the second 
stage problem (Deak, 2011), where he claims that 
the computational test indicates that the method is 
working. However, no theoretical proof of the SRA 
method exists but the performance has been 
efficient for more details see (Deak, 2002; Deak, 
2003; Deak, 2006). 𝑄(𝒙) = 𝐸(𝑞(𝑥, 𝜉) =

𝐸(𝑚𝑖𝑛"𝑞!𝑦|𝑊# = 𝜉 − 𝑇𝑥, 𝑦 ≥ 0) where 𝑞 is a 
random variable and we assume that the matrices 
T and W are deterministic. The main difficult 
computationally is computing the value of the 
expected recourse when the being 
multidimensional integral is hard to calculate the 
expected value. It is easily computed for any x and 
𝜉* by unbiased estimate of it: 
 
2. Computing a Least Squares-

Regression for Exponential 
Approximation 

 
Assume that we have k distinct points, for 
instance(𝑥%, 𝑦%), … (𝑥( , 𝑦()) and we need to 
interpolate a function  𝑔* = 𝑔(𝑥*)  such  that  𝑔* =
𝑦* 	for all  
	𝑖 = 1,… , 𝑘 Consider we need to an interpolation 
for these points that satisfy the exponential 
function, i.e., 

                       
 𝑦* = 𝛼	𝑒89# ,	for 		𝑖 = 1, 2, … , 𝑘                                         (6) 

 
where α and β are unknown constants. In order to 
give the best approximation for the function 𝑔*  we 

shall solve the least square problem (𝐿&  minimum 
norm), that is,  

   

 𝑚𝑖𝑛𝛼, 𝛽 ∑ [𝑔* − 𝑦*]&$
*+% 	                                       (7) 

 
Apply the natural logarithm for both sides of Eq. 
(6) then we obtain  

𝑙𝑛𝑦* = lnc𝛼	𝑒89#d = 𝑙𝑛𝛼 + 𝛽𝑥* 

Let 𝑓* = 𝑙𝑛𝑦* and 𝛾 = 𝑙𝑛𝛼, then the least square 
problem (7) can be transformed into 

                           

 
𝑚𝑖𝑛
𝛼, 𝛽 ∑ [𝑓* − (𝛾 + 𝛽𝑥*]&$

*+% 	                                (8) 

 
 

Hence, we will solve the minimization problem 
(8) that is associated to the pints (𝑥* , 𝑓*) for 𝑖 =

1,… , 𝑘, then, we will obtain the solution of the 
minimization problem (7) by using 𝛼 = exp(𝛾).  
By differentiating (8) with respect to 𝛾 and 𝛽, 
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respectively, and putting the derivatives equal to 
zero. Then we have 
 ∑ [𝑓* − (𝛾 + 𝛽𝑥*]$

*+% = 0 

j𝑥*[𝑓* − (𝛾 + 𝛽𝑥*]
$

*+%

= 0 

By solving the above system in the unknowns 
constants γ and β following the  
same technique as given by [4], consider 
                                  𝑚2 =

%
(
∑ 𝑓* ,(
*+%  	 	 	 	 	 𝑚% =

%
(
∑ 𝑓* 	𝑥* ,(
*+%    

 
𝑀2 =

%
(
∑ 𝑥*2 = 1,(
*+%  	 	 	 	 	𝑀% =

%
(
∑ 	𝑥* ,(
*+%   	 	𝑀& =

%
(
∑ 	𝑥*&,(
*+%  

 
Then, we can rewrite the system (3–3) as follows 
𝛽𝑀& + 𝛾𝑀% = 𝑚%, 𝛽𝑀% + 𝛾𝑀2 = 𝑚2, that is 

k𝑀& 𝑀%
𝑀% 𝑀2

lk𝛽𝛾l = m
𝑚%
𝑚2
n. 

Thus, we obtain 𝛽 = /'$%!&'!
:"/:!

" ,	and 𝛾 =
/'$%"('!%!

:"/:!
" . 

Furthermore, the solution of the minimization 
problem (7) is given by  
 
𝛽 = ( ∑ 9#.$##

)
#*! /∑ ∑ 9#.$##

)
#*!

)
#*!

(∑ 9#
")

#*! /<∑ 9#)
#*! =

" ,  and  

𝛾

= 𝑒𝑥𝑝 p
−∑ 𝑥* ∑ 𝑥*(

*+% 𝑙𝑛𝑦*(
*+% + ∑ 𝑙𝑛𝑦* ∑ 𝑥*&(

*+%
(
*+%

𝑘 ∑ 𝑥*&(
*+% − c∑ 𝑥*(

*+% d&
q 

 
3. Multidimensional SERA 
 
Consider we have 𝒌 distinct points 𝒙𝒊, 𝐛 ∈ 𝐑𝐧 for 
𝑖 = 1, 2, … , 𝑘. We need an interpolate these points 
such that satisfies the exponential function 

 
𝑦* = 𝛼𝑒𝒃-9 ,	for 𝑖 = 1, 2, … , 𝑘       (9) 

 
where α and b are unknown constants. Similarly 
as for the previous simple case, by taking the 
logarithm for both sides of Eq. (9).  Assume that 

𝑓* = 𝑙𝑛𝑦* and 𝛾 = 𝑙𝑛𝛼, then by solving the 
following minimization problem we can compute 
the 𝐿&	minimum norm, that is 

 
𝑚𝑖𝑛
𝛾, 𝛽 ∑ [𝒇* − (𝛾 + 𝒃′𝒙]&$

*+% 	                      (10) 
 
for the unknown constant 𝛾 and  𝑏. By 
differentiating (10) with respect to 𝛾 and  𝑏, 
respectively. Then we obtain ∑ [𝒇* − (𝛾 +$

*+%
𝒃′𝒙] = 0, 
 ∑ 𝑥*@[𝒇* − (𝛾 + 𝒃′𝒙] = 0,$

*+%  for 𝑗 = 1, 2, … , 𝑛,  
where  𝑥*@  is the 𝑗 − 𝑡ℎ component of the vector 
𝑥* .  Following [5], we consider the following 
notations, 

𝑚2 =
%
(
∑ 𝒇* ,(
*+%  					𝑚%,@ =

%
(
∑ 	𝑥*@𝒇* ,(
*+%    

 
𝑀2,@ =

%
(
∑ 𝑥*@2 = 1,(
*+%  					𝑀%,@ =

%
(
∑ 	𝑥*@ ,(
*+%   and		

𝑀&,@. =
%
(
∑ 	𝑥*@𝑥*. ,(
*+%  

 
Furthermore we can rewrite the above system as 
follows 

          
  𝑴Ʌ = 𝒎,                                                (11) 

 
where Ʌ	is the vector of the unknown constants, 
Ʌ- = (𝑏%, … , 𝑏$), and  
and the vector 𝑚 and the matrix and 𝑴 are defined 
by 
  𝒎 = c𝑚%,% ,			… ,𝑚%,$, 𝑚2d 
 

𝑴 = {

𝑀&,%%					
⋮

𝑀&,$%					
𝑀%,%

⋯
⋱
⋯
⋯

						𝑀&,%$				
⋮

𝑀&,$$					
𝑀%,$

𝑀%,%
⋮

𝑀%,$
𝑀2

� 

obtain the solution of the minimization problem 
(10). 
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k 

4. SERA Algorithm for the Two-Stage 
Problem 

 

The two-stage programming with recourse can be 

written as: 

                           

 

min 𝑐!𝒙 + 𝑄(𝒙)  subject to  𝐴𝒙 = 𝑏, 𝑥 ≥ 0	                     (12) 

 

where the expected recourse function Q(x) can be 

giving as 

𝑄(𝒙) = 𝐸(𝑞(𝒙, 𝜉) = 𝐸(𝑚𝑖𝑛"𝑞!𝑦|𝑊# = 𝜉 −
𝑇𝒙, 𝑦 ≥ 0) where 𝑞 is a random variable and we 
assume that the matrices T and W are 

deterministic. The main difficult computationally 
is computing the value of the expected recourse 
when the being multidimensional integral is hard 
to calculate the expected value. It is easily 
computed for any 𝑥 and 𝜉*by unbiased estimate of 
it: 

        
𝑞* = 𝑞(𝒙, 𝜉*) = 𝑚𝑖𝑛	𝑞!𝑦    s.t        𝑇𝒙 +𝑾𝑦 = 𝜉* ,				𝑦 ≥ 0                    (13) 

 
We can easily compute the expected recourse 
𝐸(𝑞(𝒙, 𝜉)) = by given an unbiased estimate of it. 
Let 𝜉*to be independent sample with the random 
variable 𝜉, for each 𝒙*  then 𝑞* = 𝑞(𝒙* , 𝜉*) and  
𝑞*~𝑄(𝒙*)  for  𝑖 = 1, 2, … , 𝑘.    In this case: 

𝑞* =
%
(
∑ 𝑞(𝒙* , 𝜉*)(
*+%  are unbiased estimates and 

independent samples of  𝜉.  
The expected recourse function is replaced by a 
least squares-regression for exponential 
approximation regression function of the form: 

                                      
  𝑞( = 𝛼(𝑒𝒃-)9                                     (14) 

 
To find the solution for the unknown 𝛼( and 𝑏(, by 
solving the following minimization problem, we 

can compute the 𝐿& minimum norm, that is 
         

 
𝑚𝑖𝑛
𝛾, 𝑏 ∑ [𝑞* − 𝑞((𝒙*)]&$

*+% 	                                                        (15) 

 
 

Since this is a minimization problem then the first 
order necessary conditions of the above problem 
give the solution of the unknown 𝛼( and 𝑏(: 

j[𝑞* − (𝛾( + 𝒃′𝑥*]
(

*+%

= 0,		 

∑ 𝑥*@[𝑞* − (𝛾( + 𝒃′𝑥*](
*+% = 0,  𝑗 = 1, 2, … , 𝑘. 

where  𝒙*@  is the 𝑗 − 𝑡ℎ component of the 

vector	𝒙*  and 𝛾 = 𝑙𝑛𝛼 for more details see 
previous section. 
For starting our algorithm we need to generate 
random 𝑘 points of 𝒙*  and calculate 𝑞*  for these 
points. Thus giving the set 𝑆( = {𝒙* , 𝑞*}*+%(  

0. [start] let the iteration being with the number 𝑘 
of points in 𝑆(. 

1. Then, compute the following coefficient 𝑏( and 
𝛼( of exponential regression function 

 
𝑞((𝒙) = 𝛼(𝑒𝒃-)9                                             (16) 

 



Nasser  Aedh  Alreshidi: Solving Two-Stage Stochastic Programming Problems by Successive… 

 132 

from 𝑆( by solving the minimization problem 
(15). 
2. Replace first-stage problem by the following 

approximate problem: 

                                    𝑚𝑖𝑛𝒙 = 𝑐-𝒙 + 𝑞((𝒙)	                                     

(17) 
𝐴𝒙 ≤ 𝑏 
𝒙 ≥ 0 

And the solution denoted by 𝒙( 
3. If 𝒙( is ”optimal”, then the solution found, 

otherwise generate a sample for 𝜉(  
   and calculate 𝑞(~𝑄(𝒙() and add it to the 
previous set that is, 𝑆(6% = 𝑆( ∪ {𝒙( , 𝑞(}    
by increasing the number f iteration 𝑘 ≔ 𝑘 + 1 
and go back to the second step. 
 
6. Conclusion 
 
Stochastic programming has gained a major of 
optimization for modeling uncertainties in 
mathematical optimization problems. Two-stage 
stochastic programming with random is dealing the 
problem under uncertainty in models, and use 
optimization concepts optimization along with 
statistics and probability. stochastic programming 
continues develop a huge of algorithm and 
theoretical by researchers and scientists. In this 
paper, we build the algorithm of two stage problem 
which we name it successive exponential 
regression approximations (SERA) to solve the 
two-stage stochastic programming for both one-
dimension and multidimensional. The algorithm 
for solving a two-stage model with probabilistic 
constraint (successive exponential regression 
approximations (SERA)) was proposed based on 
replacing the expected recourse function, which is 
numerically hard to be solve by the regression 
function then solving this problem by this 
technique. So by this idea we can solve any two 
stage Stochastic programming. For future work we 
will use real application data to with successive 
exponential regression approximations (SERA). 
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