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Abstract: By considering a variety of objective functions, this paper has created an evolutionary method that is 
both effective and reliable for resolving the problem of multi-constraint optimal power flow (OPF). It  proposes a 
multiobjective OPF model that considers renewable energy sources in numerous scenarios. This model optimizes 
fuel costs, emissions, power losses, and voltage fluctuations. The modified Cuckoo optimization algorithm 
(MCOA) is also suggested for finding optimized and satisfactory load flow solutions. The model is tested against 
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algorithms studied in recent literature. 
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1. Introduction 
 
In today's engineering world, there is no standard 
and comprehensive way to address the 
problematic optimization issues of many sectors. 
Hence, hundreds of alternative strategies have 
been created recently, frequently proving their 
efficacy in handling specific optimization issues. 
One of the complicated challenges in engineering 
is optimal power flow (OPF), which is of 
significant significance in designing power 
systems (Ghasemi, Ghavidel, Gitizadeh, et al., 
2015). The basic topic of OPF has been garnering 
the attention of researchers in the area of electrical 
engineering for more than 50 years. The first 
simplified issue is the OPF problem for vast 
networks (Ghasemi, Ghavidel, Gitizadeh, et al., 
2015). In the past, researchers employed solution 
strategies based on mathematical methods such as 
nonlinear programming (NLP) (Alsac & Stott, 
1974) to address these difficulties. Heuristic 
solutions were employed to address the OPF issue 
in the following. The difficulty of the actual OPF 
issue (owing to its nonlinear, non-convex and 
non-derivative character) has motivated 
academics to develop novel optimization 
approaches to address the problem in recent 
years. 
Researchers have suggested the teaching-
learning-based improvement (TLBO) algorithmic 
program increased with Lévy mutation (LTLBO) 
(Ghasemi, Ghavidel, Gitizadeh, et al., 2015), a 
modified lepidopteron swarm algorithm (MMSA) 
(Elattar, 2019) to account for indirect, overstated, 
and underestimated expenses connected with 
renewable energy systems. This endeavour aims 
to reduce the financial strain placed on 
businesses. Multiobjective accommodative 
guided differential evolution (DE) (Duman et al., 
2021), a more effective method for multiobjective 
optimization of manta hunting (IMOMRFO) is 
presented in (Kahraman et al., 2022). 
Multiobjective mayfly algorithm (MOMA) 
(Kyomugisha et al., 2022), a particle swarm 
optimization (PSO) (Hazra & Sinha, 2011), Jaya 
algorithm (Warid et al., 2016), chaotic invasive 
weed optimization algorithms (CIWO) (Ghasemi, 
Ghavidel, Akbari, et al., 2014), and an algorithm 
for identifying new bacteria (MBFA) (Panda et 
al., 2017). At the level (Shi et al., 2011), a newly 
developed hybrid algorithmic program for the 
protection of OPF required the utilization of wind 
and heat generators. An new improved adaptive 
DE (Li et al., 2020), adaptive cluster search 

optimization (AGSO) (Daryani et al., 2016), ant 
lion algorithm (Maheshwari et al., 2021), the 
multiobjective First State algorithmic program 
(Elattar & ElSayed, 2019), the enhanced colliding 
bodies improvement (ICBO) (Bouchekara et al., 
2016), BAT search algorithmic program 
(Venkateswara Rao & Nagesh Kumar, 2015), and 
the salp swarm algorithmic program (SSA) 
(Kamel et al., 2021). Improved artificial bee 
colonies (IABCs) (Khorsandi et al., 2013), 
multiobjective dynamic OPFs (Ma et al., 2019), 
the Harris hawks improvement (HHO) technique 
(Islam et al., 2020), a hybrid of phasor PSO 
(PPSO), and attraction search (PPSO-GSA) 
(Ullah et al., 2019) are also examples of recent 
developments in this field. 
A novel hybrid firefly-bat algorithmic program 
with a constraints-priority object-fuzzy sorting 
approach has been developed and named gray 
wolf improvement (GWO) (Khan et al., 2020). 
This program is based on the firefly, and the bat 
(HFBA-COFS) (Chen et al., 2019), a hybrid PSO-
GWO (Riaz et al., 2021) algorithmic program is 
created by combining the particle swarm 
optimization (PSO) method with the gray wolf 
optimization (GWO) algorithm. An anticipated 
security value dynamic OPF (ESCDOPF) with a 
hybrid system that makes use of both star 
resources and flexible resources (Kumari & 
Vaisakh, 2022), a bird swarm algorithmic 
program (BSA) (Ahmad et al., 2021), a chaotic 
Pan troglodytes optimizer (CBO) (Hassan et al., 
n.d.). Tunicate swarm algorithm (TSA) (El-
Sehiemy, 2022), a modified flow of a water-based 
optimizer (TFWO) (Sarhan et al., 2022), and an 
improved hybrid PSO and GSA (PSOGSA) 
integrated with chaotic maps (CPSOGSA) for 
OPF with random alternative energy and FACTS 
devices (Duman, Li, et al., 2020). A new cross 
entropy-cuckoo search algorithm (CE-CSA) 
(Sarda et al., 2021), and a hybrid PSO and shuffle 
frog leap algorithmic program (SFLA) (Narimani 
et al., 2013). 
Program with an improved algorithm for 
maximizing Pareto efficiency outlined in (Yuan 
et al., 2017) is three significant enhancements that 
have been made to the preliminary version of the 
algorithmic software for the Pareto organic 
process. To get things started, the population size 
of the external archive is just the number of 
persons who have a subordinate position in the 
choice operator of the surrounding environment. 
Second, the population of the external archive is 
maintained up to date by using the geometer 
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distance between the elite and their k-th closest 
neighbours. This keeps the population of the 
external archive accurate. Thirdly, the native 
search approach is included in the algorithmic 
program that makes up the strong Pareto organic 
process. The two-point estimation methodology 
(TPEM) (Saha et al., 2019), the social spider 
improvement algorithms (SSO) (Nguyen, 2019), 
and sine-cosine algorithm (SCA) (Attia et al., 
2018; Dasgupta et al., 2020). The cuckoo 
optimization algorithm (COA) (Rajabioun, 2011) 
is a powerful and frequently used evolutionary 
optimization technique. It was invented by Ramin 
Rajabion in 2011 and is named after its namesake. 
This idea, which was first inspired by the cuckoo's 
habit of laying eggs and subsequently evolved to 
encompass the practice of stealing eggs from 
one's neighbours, has found application in a 
variety of industries like increasing lagrangian 
relaxation unit commitment (Zeynal et al., 2014), 
optimum coordination of directed overcurrent 
relays in microgrids (Dehghanpour et al., 2016), 
and electrical power system forecasting (Xiao et 
al., 2017), extreme learning machine for 
categorization of medical data (Mohapatra et al., 
2015), etc. 
It has been shown, however, that when used in 
complicated nonlinear circumstances, the 
technique risks being trapped in a local solution 
and losing the ability to optimize the solution 
(Dalali & Kazemi Karegar, 2016). The literature 
review shows that an efficient version of the COA 
has yet to be proposed for optimizing the various 
kinds of OPF problems. Also, some other 
optimization algorithms reviewed require 
improvements in robustness, finding better 
solutions, avoiding local optimal solutions, and 
improving convergence properties. Thus, this 
paper employs a new migration operator to 
balance the exploration-exploitation process 
strategically and improve the quality of optimal 
solutions through COA. The analysis of eight 
cases with different objectives on the IEEE 30-
bus and IEEE 118-bus networks illustrated the 
cost-emission-effective scheduling of thermal 
power plants using renewable energies. 
Moreover, the simulation results demonstrate the 
MCOA's effectiveness and validity compared 
with other recently published algorithms for 
solving OPF problems. This study employs one of 
the effective strategies that has been applied in the 
past to maximize various load dispatch challenges 
in the two solar-and-wind-powered combined 
power systems. 
Here are the main contributions of this paper: 

1) Introducing a novel, efficient, and robust 
version of conventional cuckoo 
optimization algorithms, namely modified 
cuckoo optimization algorithms (MCOA), 
for optimizing optimal power flow (OPF) 
problems involving conventional thermal 
power plants and renewable energy 
sources, including solar photovoltaics and 
wind power distributed generation systems.  

2) To address the uncertainties of renewable 
generations, in this work, the Weibull 
probability density function models the 
wind distribution, whereas the lognormal 
probability density function models the 
solar irradiation. 

3)  As part of the OPF problem, fuel costs, 
emissions, power losses, and voltage 
deviations are considered. These functions 
are constrained by economic, technical, and 
safety factors. Aside from the production 
cost of thermal power units, this study also 
considered reserve, direct, and penalty 
costs. 

4) The amount of carbon tax is linked to the 
goal function to examine the potential 
effects of renewable energies on the 
optimal scheduling of thermal power plants 
in a cost-emission-effective manner. 

5) Comparing the proposed MCOA and other 
recently published algorithms on the IEEE 
30-bus and IEEE 118-bus networks to 
illustrate their effectiveness and validity. 

This research continues in the following four 
sections: section 2, in which we discuss the 
formulation of OPF issues; section 3, in which we 
explain the concepts and structure of COA; and 
sections 4 and 5, in which we offer the proposed 
MCOA algorithm to solve OPF in the IEEE 30-
bus and IEEE 118-bus networks, respectively. 
We will display and debate the simulation's 
results in the fourth part. In the concluding part, 
labelled "Conclusions," 6 will summarize the 
study's findings. 
 
2 . OPF Problem Formulation 
Solving the OPF problem involves determining 
and controlling a set of control variables to 
optimize the objectives in the operation of an 
electric network (while balancing all practical 
constraints). A primary goal is to minimize 
production costs while satisfying electrical 
demands. 
A multiobjective OPF with different constraints is 
presented in this study as an alternative to other 
algorithms studied in the recent literature. The 
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following expression is used to create a typical 
OPF problem (Ghasemi, Ghavidel, Gitizadeh, et 
al., 2015): 

𝑀𝑖𝑛𝐹(𝑢, 𝑥) (1) 
ℎ(𝑢, 𝑥) 	≤ 	0 (2) 
𝑔(𝑢, 𝑥) 	= 	0 (3) 

Within these associations, u and x represent, 
respectively, the independent and the control 
variables. 
In addition, the objective function consists of a 
collection of equality requirements and a set of 
inequality constraints that pertain to the issue. 

2.1 Control variables 
The following are examples of control variables 
that are involved in OPF issue relationships 
(Ghasemi, Ghavidel, Gitizadeh, et al., 2015):  

1. 𝑃!! , . . . , 𝑃!"# 	The active power generated in 
the PV bus, except for the slack bus 

2 .  𝑉!$ , . . . , 𝑉!"# Voltage range in PV buses 
3 .  𝑄"$ , . . . , 𝑄""%  Compensation of parallel 

reactive amperes 

4 .  𝑇#, . . . , 𝑇$% Adjustment of tap transformers 
According to the control variables, u is included: 

𝑢% = 5𝑄"$ , . . . , 𝑄""% , 𝑉!$ , . . . , 𝑉!"# , 𝑃!! , . . . , 𝑃!"# , 𝑇#, . . . , 𝑇$%6                                      (4) 

Where NG, NC and NT show the number of 
generators, reactive power compensators and tap-
changer transformers. 
 
2.2 State variables 
The set of state variables in OPF problem 
relationships include the following (Ghasemi, 
Ghavidel, Gitizadeh, et al., 2015): 

1. 𝑃!$ : Active production power in slack bass 
2.  𝑉&$ , . . . , 𝑉&"&' Voltage range in load buses 
3.  𝑄!$ , . . . , 𝑄!"#  Output reactive power of 

production units 
4. 𝑆'$ , . . . , 𝑆'"() Power loading in the lines 
So, x is included: 

𝑥% = 8𝑆'$ , . . . , 𝑆'"() , 𝑄!$ , . . . , 𝑄!"# , 𝑉&$ , . . . , 𝑉&"&' , 𝑃!$9 (5)   

where the numbers represent the bus bars, network lines, and total lines (NPQ, NTL, and NG). 
 
2.3 Equality constraints 
The problem's insistence on equality places 
restrictions on how we may approach it, as 
discussed in this section. The technical status of 
the power network, as defined by OPF relations, 
is described by the parity constraints, also known 
as physical constraints, in OPF. This may convey 
these restrictions through the majority of the 
following links (Ghasemi, Ghavidel, Gitizadeh, et 
al., 2015): 

𝑃!( − 𝑃)( − 𝑉(;𝑉*5𝐵(* sin 	 (𝛿( − 𝛿*)
$+

*,#
+ 𝐺(* cos 	 (𝛿( − 𝛿*)	6 	
= 	0 

(6) 

𝑄!( − 𝑄)( − 𝑉(;𝑉*5𝐺(* sin( 𝛿( − 𝛿*) 	
$+

*,#
−	𝐵(* 𝑐𝑜𝑠( 𝛿( − 𝛿*)6 	
= 	0 

(7) 

Let's break this issue down into its component 
components to make things clearer: 
"i" and "j" are bus number indices; "Vi" and "Vj" 
are voltage magnitudes; "PGi" and "QGi" are real 
and reactive power outputs from the generator; 
and "QDi" and "PDi" are real and reactive power 

demands from the load. Let's begin with "i" and 
"j" as these are the array indices. The following 
table details the susceptance Bij and conductance 
Gij of the branch connecting bus i and bus j, as 
well as the phase angle (𝛿( − 𝛿*) between the 
voltages of the buses and the total number of 
buses in the system. 
 
2.4 Inequality constraints 
The following are some technical limitations put 
on generators for i=1, 2, …, NG (Ghasemi, 
Ghavidel, Gitizadeh, et al., 2015): 

𝑉!(-(. ≤ 𝑉!( ≤ 𝑉!(-/0 (8) 

𝑃!(-(. ≤ 𝑃!( ≤ 𝑃!(-/0 (9) 

𝑄!(-(. ≤ 𝑄!( ≤ 𝑄!(-/0 (10) 

In this equation, 𝑉!(-(. and 𝑉!(-/0 represent the 
minimum and maximum magnitudes of voltage 
for the ith unit, 𝑃!(-(.and 𝑃!(-/0represent the 
minimum and maximum values of real power for 
the ith unit, and 𝑄!(-/0and 𝑄!(-(.represent the 
maximum and minimum allowable values of 
reactive generation for the ith generator. 
Furthermore, the following connections 
illuminate the technical limitations of 
transformers and parallel VAR compensators: 
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𝑇(-(. ≤ 𝑇( ≤ 𝑇(-/0 (11) 
𝑄"(-(. ≤ 𝑄"( ≤ 𝑄"(-/0 (12) 

where 𝑇(-/0and 𝑇(-(.are the maximum and 
lowest taps of transformers for 𝑖 = 1, . . . , 𝑁𝑇 that 
may be used to change the tap of the ith 
transformer. The range of VAR of the 
compensating compensators for 𝑖 = 1, . . . , 𝑁𝐶 is 
denoted by 𝑄"(-(.and 𝑄"(-/0. 
Finally, the following are some of the limitations 
of network security: 

• The bus bar voltage constraints 
As stated in (13), the voltage of system bus bars 
must be selected between the upper 𝑉&(-(. and 
lower 𝑉&(-/0 limitations. 

𝑉&(-(. ≤ 𝑉&( ≤ 𝑉&(-/0; 𝑖 = 1, 2, … ,𝑁𝑃𝑄 (13) 
• Power in transmission lines 

The power in the network lines for 𝑖 =
1,2, . . . , 𝑁𝑇𝐿 should fulfill the relation (14): 

𝑆'( ≤ 𝑆'(-/0 (14) 
𝑆'( and 𝑆'(-/0 signify the apparent power through 
ith transmission line and its higher range. 
 
2.5 Control constraints 
In order to consider the violation of the 
constraints of a penalty function, it is considered 
as follows (Ghasemi, Ghavidel, Gitizadeh, et al., 
2015): 

 

(15) 

where xlim is a variable that is specified in the 
following equation as an auxiliary variable, where 

𝜆1, 𝜆2, 𝜆3, and 𝜆4 are the punishment factors 
(Ghasemi, Ghavidel, Gitizadeh, et al., 2015): 
 

 

(16) 

3 The Proposed Optimizer 
3.1 COA overview 
The key phases of the cuckoo bird optimization 
technique may be broken down (Rajabioun, 
2011): 

Stage 1:  We'll randomly specify where the 
cuckoos are staying. 

Stage 2: Distribute eggs among the cuckoos. 
Stage 3: Calculate how far apart each cuckoo 

nest is. 
Stage 4: The egg-laying by the cuckoo in the 

host bird's nest. 
Stage 5: If host birds find eggs, they will be 

destroyed. 
Stage 6: An incubator is used to grow eggs 

that have yet to be recognized. 
Stage 7: Evaluate the cuckoos' new home. 
Stage 8: After the maximum number of 

cuckoos for a specific area has been established, 
any cuckoos found in the wrong locations will be 
removed. 

Stage 9: Cuckoos are sorted into groups using 
the k-means algorithm. The optimal cuckoo cluster 
is selected as the destination. 

Stage 10: Transport the newly established 
cuckoo population to the designated area. 

Stage 11: Verify the stop condition; if it has 
not been set, go to Step 2. 
 
Production of cuckoo nesting areas (initial 
population solutions) 
The habitat in this approach is an array whose 
elements are the values of the problem variables. 
The following is an example definition of a 
habitat for a D-dimensional optimization 
problem: 

𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑜𝑟𝑋( = [𝑥#, 𝑥5, . . . , 𝑥)] (17) 

The degree of suitability (or amount of profit) in 
the current habitat is obtained by evaluating the 
profit function f in the habitat: 

𝑓(𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑜𝑟𝑋() = 𝑓([𝑥#, 𝑥5, . . . , 𝑥)]) (18) 

It is sufficient to increase the cost function by a 
negative sign to use COA when finding solutions 
to minimization situations. Each of these 
environments is given a certain number of eggs to 

lim 2 lim 2

1 1 1

lim 2 lim 2
1 1

1

( ) ( ) ( )

( ) ( )

NPQNG NTL

i Gi S li li V Li Li
i i i
NG

Q Gi Gi P G G
i

J F P S S V V

Q Q P P

l l

l l

= = =

=

= + - + -

+ - + -

å å å

å

min max

lim max max

min min

     
;      
;      

x x x x
x x x x

x x x

ì £ £
ï

= >í
ï <î



Journal of the North for Basic and Applied Sciences, Vol. (8), Issue (2),  (November 2023/ Rabi' II 1445 H) 
    

 

 95 

work with. In the wild, a cuckoo will lay 
anywhere from 5 to 20 eggs in one location. 
Throughout several iterations, these values are 
utilized to determine the top and lower boundaries 
of the egg allotment given to each cuckoo. 

The maximum laying range, also known as ELR, 
is a function of several factors, including the total 
number of eggs, the present number of cuckoo 
eggs, and the upper and lower bounds of the issue 
variables. In light of this, the ELR may be 
understood to refer to the following relationship: 

 

𝐸𝐿𝑅 = 𝜎 ×
Number	of	current	cuckoos	eggs
Tota l number of eggs (𝑋𝑚𝑖𝑛-/0)

 
(19) 

𝜎  The setting factor of the maximum radius is 
ELR. 

Cuckoos have been seen to nest in the ELR of the 
host bird. 

Then, after each round of egg-laying, the p% of 
eggs (often 10%) with the lowest objective 
function value or profit is destroyed. 

Cuckoo habitats 
K-means classification puts the cuckoos into 
groups, and k-values between 3 and 5 are 
generally enough. We can determine where a 
given community would be best served by 
averaging everyone's aims. Then the group whose 
average value of the goal function or profit is 
most significant is chosen as the target, and the 
other groups begin to move in that direction. Each 
cuckoo in this migration takes a detour φ from the 
best possible route, covering just δ% of the total 
distance between the origin and destination. 

The cuckoo can better investigate its 
surroundings with these two variables. An angle 
φ between -π/6 and π/6, and δ a random value 
between 0 and 1, respectively. When all the 
cuckoos have arrived at their destination, and 
their new homes have been identified, they will 
each have a clutch of eggs. Each cuckoo is 
assigned an ELR based on its egg production, and 
laying starts afterward. The cuckoo optimization 
method uses a migration operator defined by the 
following formula: 

𝑋(.67 = 𝑋( + 𝐹 × (𝑋869: − 𝑋() (20) 

The parameter determines the level of divergence, 
denoted by F, and Xbest indicates the best 
solution the algorithm has produced to this point. 

To keep the population from fluctuating too 
much, a maximum number of cuckoos, or 
algorithms, known as Nmax, has been established. 

If the cuckoo population surpasses this barrier, 
any birds found to be residing in areas where they 
are not welcome will be eradicated. 

Convergent optimization with the use of COA 
This method repeats itself until all cuckoo 
populations have the highest possible degree of 
egg likeness to their host birds and are situated 
such that they are close to the greatest number of 
food sources. This position will optimize 
revenues, or the function sought while lowering 
the number of eggs harmed. 

3.2 The proposed method 
The Cuckoo search algorithm has been updated to 
make local searches more effective in terms of 
their efficiency. In practice, the solutions in the 
COA move very quickly toward Xbest and a 
position equal to what they obtain with Xbest. In 
other words, they become trapped in the optimal 
local solution, and the COA loses its ability to 
optimize, as shown by equation (20) and the 
simulations performed in this article. In addition, 
the COA loses its optimization power. Because of 
this, it is necessary to improve the algorithm's 
capability to do local searches. Because of this, 
we have suggested the usage of a new operator in 
the fundamental movement equation of the 
cuckoo optimization strategy. This operator is 
written as –rand*(Xworst – Xi). Whenever members 
of the population move very quickly to the Xbest 
value and the value of (Xbest – Xi) tends to zero, 
the new operator –rand*(Xworst – Xi) tends to zero 
much more slowly due to the utilization of Xworst. 
This is the case regardless of whether the value of 
(Xbest – Xi) tends to zero. Therefore, members 
keep up their efforts to search and migrate around 
the country in the expectation that the outcomes 
of our simulation will illustrate the efficacy of the 
new search vector in the proper context. The F 
parameter of the modified COA (MCOA) is 
removed in favor of a random integer in this 
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method, which reduces the technique's overall 
complexity. The migration operator formula may 
be represented as a relation when using the 

modified cuckoo optimization approach, which is 
as follows: 

𝑋(.67 = 𝑋( + 𝑟𝑎𝑛𝑑 × (𝑋869: − 𝑋() − 𝑟𝑎𝑛𝑑 × (𝑋7;<9: − 𝑋() (21) 

Here, rand represents the random values are 
numbers between 0 and 1. 

3.3. Time Complexity 
It is worthwhile to remember that MCOA's 
computational complexity is determined by three 
processes: initialization, fitness evaluation, and 
updating of the algorithm population. 
Consequently, the computational complexity of 
the initialization process is O(Npop). As a result, 
the computational complexity of the updating 
mechanism is O(Itermax + Npop)+O(Itermax + 
Npop + D), in which the aim is to find the most 
optimal location and update the location vector of 
all populations. The maximum number of 
iterations itermax is determined by the dimension 
of the problem, and D is the maximum number of 
iterations. MCOA, like the original COA 

algorithm, has a computational complexity of 
O(Npop×(Itermax + Itermax ×D + 1)). 

4. MCOA for Solving the Various OPF 
Problems in the IEEE standard 30-bus system 
In this section, the proposed MCOA algorithm is 
implemented in MATLAB 2014a. And for load 
distribution analysis, MATPOWER (Zimmerman 
et al., n.d.) software is used. All cases are 
executed on the IEEE standard 30-bus system 
(Mohamed et al., 2017), which is used in many 
articles, as shown in Figure 1. For all investigated 
cases, a population of 60 and a number of 
repetitions of 400 were used in both COA and 
MCOA algorithms. In order to make the proposed 
MCOA method effective and compare it with 
COA, eight OPF scenarios have been considered 
and simulated. 

In the supplemental material, Table 1 summarizes 
MCOA's conclusive findings for the 30-bus 

power system under six different OPF scenarios 
that do not use stochastic renewable energy.  

 

Figure 1: The layout of the IEEE 30-bus network. 
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Table 1:The ideal values for the variables that MCOA found for OPF  without using stochastic 
renewable energy. 

 

Var. 
Cases 

1 2 3 4 5 6 

PG1 (MW) 177.1373 140.0000 198.7757 102.6071 175.5192 122.1789 

PG2 48.7211 55.0000 44.7459 55.5533 48.4117 52.5609 

PG5 21.3808 24.1481 18.5791 38.1102 21.2771 31.4833 

PG8 21.2481 34.9526 10.0000 35.0000 23.1580 35.0000 

PG11 11.9338 19.2642 10.0002 30.0000 12.8093 26.7244 

PG13 12.0001 16.7568 12.0000 26.6587 12.0000 21.0401 

VG1 (p.u.) 1.0836 1.0757 1.0807 1.0698 1.0429 1.0732 

VG2 1.0605 1.0581 1.0573 1.0576 1.0225 1.0574 

VG5 1.0339 1.0324 1.0296 1.0359 1.0152 1.0325 

VG8 1.0382 1.0410 1.0360 1.0438 1.0041 1.0407 

VG11 1.0999 1.0810 1.0969 1.0834 1.0723 1.0401 

VG13 1.0511 1.0561 1.0710 1.0573 0.9902 1.0246 

T6–9 1.0782 1.0229 1.0987 1.0744 1.0972 1.0997 

T6–10 0.9057 0.9611 0.9002 0.9111 0.9017 0.9509 

T4-12 0.9787 0.9917 1.0040 0.9901 0.9399 1.0331 

T28–27 0.9729 0.9737 0.9772 0.9750 0.9693 1.0046 

QC10 (MVAR) 1.1748 4.9159 5.0000 4.6868 4.5850 3.1626 

QC12 2.3807 3.3019 0.0029 0.1790 0.0289 0.0401 

QC15 4.2578 4.1233 4.9995 4.4675 4.7603 3.8335 

QC17 4.9792 5.0000 4.9941 5.0000 0.2594 4.9998 

QC20 4.2860 4.4169 0.0 4.2431 4.9959 4.9997 

QC21 4.9980 4.9918 4.9999 5.0000 4.7559 5.0000 

QC23 3.3965 3.6741 3.5363 3.2614 4.9780 4.2152 

QC24 4.9973 4.9986 5.0000 5.0000 4.9766 5.0000 

QC29 2.6408 2.6782 2.7027 2.5507 2.7285 2.6110 

Cost ($/h) 800.4791 646.4890 832.2134 859.0154 803.7176 830.2798 

Emission (t/h) 0.3663 0.2835 0.4379 0.2289 0.3614 0.2529 

Power losses (MW) 9.0212 6.7217 10.7009 4.5263 9.7753 5.5876 

V.D. (p.u.) 0.9091 0.9277 0.8323 0.9298 0.0941 0.2971 
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4.1 Case 1: Minimizing the fuel cost 
Several aspects of the objective function were 
considered while working on the OPF issue for 
this research. The first component of this goal 
function of minimizing fuel costs is resources, 
which is the same as the conventional cost 
function in that it has the same meaning. 

𝐽# =;(𝛼( + 𝑏(𝑃!( + 𝑐(𝑃!(5 )
$!

(,#

 (22) 

where the coefficients ai, bi, and ci (Mohamed et 
al., 2017) show the costs associated with the ith 
unit. 

Table 2 compares testified findings from recent 
works such as MSA (Mohamed et al., 2017), 
MGBICA (Ghasemi, Ghavidel, Ghanbarian, et 
al., 2015), MRFO (Guvenc et al., 2020), MPSO-
SFLA (Narimani et al., 2013), EP (SOOD, 2007), 
IEP (Ongsakul & Tantimaporn, 2006), PSOGSA 

(Radosavljević et al., 2015), GWO (Niknam, 
Narimani, Aghaei, et al., 2011), FPA (Mohamed 
et al., 2017), ARCBBO (Ramesh Kumar & 
Premalatha, 2015), JAYA (Warid et al., 2016), 
MICA-TLA (Ghasemi, Ghavidel, Rahmani, et al., 
2014), PPSOGSA (Ullah et al., 2019), DE (Sayah 
& Zehar, 2008), MHBMO (El-Fergany & 
Hasanien, 2015), MFO (Mohamed et al., 2017), 
TS (Abido, 2002), AGSO (Hazra & Sinha, 2011), 
SFLA-SA (Niknam, Narimani, Jabbari, et al., 
2011), SKH (Pulluri et al., 2018), ABC (Abaci & 
Yamacli, 2016), and AO (Khamees et al., 2021) 
on the OPF of COA and MCOA algorithms. 

According to Table 2, the provided algorithm 
outperformed the others in attaining the lowest 
potential fuel cost. The convergence properties of 
the COA and MCOA algorithms are shown in 
Figure 2. From this diagram, it is easy to see that 
in case 1, the algorithms reach a correct final 
solution at the right moment.  

 

Table 2: The optimal solutions for case 1. 
 

Optimizer Fuel cost ($/h) Emission (t/h) Power losses 
(MW) V.D. (p.u.) 

MSA (Mohamed et 
al., 2017) 800.5099 0.36645 9.0345 0.90357 

MGBICA 
(Ghasemi, 
Ghavidel, 
Ghanbarian, et al., 
2015) 

801.1409 0.3296 - - 

MRFO (Guvenc et 
al., 2020) 800.7680 - 9.1150 - 

MPSO-SFLA 
(Narimani et al., 
2013) 

801.75 - 9.54 - 

EP (SOOD, 2007) 803.57 - - - 

IEP (Ongsakul & 
Tantimaporn, 2006) 802.46 - - - 

PSOGSA 
(Radosavljević et 
al., 2015) 

800.49859 - 9.0339 0.12674 



Journal of the North for Basic and Applied Sciences, Vol. (8), Issue (2),  (November 2023/ Rabi' II 1445 H) 
    

 

 99 

GWO (Niknam, 
Narimani, Aghaei, 
et al., 2011) 

801.41 - 9.30 - 

FPA (Mohamed et 
al., 2017) 802.7983 0.35959 9.5406 0.36788 

ARCBBO (Ramesh 
Kumar & 
Premalatha, 2015) 

800.5159 0.3663 9.0255 0.8867 

JAYA (Warid et al., 
2016) 800.4794 - 9.06481 0.1273 

MICA-TLA 
(Ghasemi, 
Ghavidel, Rahmani, 
et al., 2014) 

801.0488 - 9.1895 - 

PPSOGSA (Ullah et 
al., 2019) 800.528 - 9.02665 0.91136 

DE (Sayah & Zehar, 
2008) 802.39 - 9.466 - 

MHBMO (El-
Fergany & 
Hasanien, 2015) 

801.985 - 9.49 - 

MFO (Mohamed et 
al., 2017) 800.6863 0.36849 9.1492 0.75768 

TS (Abido, 2002) 802.29 - - - 

AGSO (Hazra & 
Sinha, 2011) 801.75 0.3703 - - 

SFLA-SA (Niknam, 
Narimani, Jabbari, 
et al., 2011) 

801.79 - - - 

SKH (Pulluri et al., 
2018) 800.5141 0.3662 9.0282 - 

ABC (Abaci & 
Yamacli, 2016) 800.660 0.365141 9.0328 0.9209 

AO (Khamees et al., 
2021) 801.83 - - - 

COA 801.7449 0.3739 9.4432 0.5715 

MCOA 800.4791 0.3663 9.0212 0.9091 
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Figure 2: Convergence for case 1. 

4.2 Case 2: Minimizing piecewise quadratic 
fuel cost functions. 
Thermal generators can operate on a wide range 
of fuels depending on the requirements of the 

network. Consequently, we may consider the 
theoretical analysis of the F curve for these units 
(1 and 2) to be a collection of constraints. 

 

(23) 

For the kth kind of fuel, the cost coefficients of 
generator i are indicated by the notation aik, bik, 
and cik, respectively. 

As a direct consequence of this, the goal function 
for modeling the features of fuel costs may be 
shown as follows: 

𝐽5 = n;𝛼(= + 𝑐(=𝑃!(5 + 𝑏(=𝑃!(

$!

(,#

o (24) 

Table 3 compares these results to the outcomes 
that have been reported in the most recent 
research, such as MDE (Sayah & Zehar, 2008), 
MPSO-SFLA (Narimani et al., 2013), MSA 
(Mohamed et al., 2017), IEP (Ongsakul & 

Tantimaporn, 2006), SSA (Jebaraj & Sakthivel, 
2022), SSO (Nguyen, 2019), GABC (Roy & 
Jadhav, 2015), FPA (Mohamed et al., 2017), 
MICA-TLA (Ghasemi, Ghavidel, Rahmani, et al., 
2014), MFO (Mohamed et al., 2017), and LTLBO 
(Ghasemi, Ghavidel, Gitizadeh, et al., 2015). The 
fuel that costs the least per hour ($/h), produces 
the fewest emissions ($/ton), wastes the least 
amount of power (MW), and has the lowest V.D. 
(p.u.) is the one that wins. This table demonstrates 
that the MCOA approach described here performs 
better than the other algorithms that were taken 
into consideration. Figure 3 illustrates the 
convergence characteristic curve of the two 
algorithms that were investigated for this work to 
find the optimum solution.  
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Table 3: The optimal solutions for case 2. 

 

Optimizer Fuel cost ($/h) Emission (t/h) Power losses 
(MW) V.D. (p.u.) 

MDE (Sayah & 
Zehar, 2008) 647.846 - 7.095 - 

MPSO-SFLA 
(Narimani et al., 
2013) 

647.55 - - - 

MSA 
(Mohamed et 
al., 2017) 

646.8364 0.28352 6.8001 0.84479 

IEP (Ongsakul 
& Tantimaporn, 
2006) 

649.312 - - - 

SSA (Jebaraj & 
Sakthivel, 2022) 646.7796 0.2836 6.5599 0.5320 

SSO (Nguyen, 
2019) 663.3518 - - - 

GABC (Roy & 
Jadhav, 2015) 647.03 - 6.8160 0.8010 

FPA (Mohamed 
et al., 2017) 651.3768 0.28083 7.2355 0.31259 

MICA-TLA 
(Ghasemi, 
Ghavidel, 
Rahmani, et al., 
2014) 

647.1002 - 6.8945 - 

MFO 
(Mohamed et 
al., 2017) 

649.2727 0.28336 7.2293 0.47024 

LTLBO 
(Ghasemi, 
Ghavidel, 
Gitizadeh, et al., 
2015) 

647.4315 0.2835 6.9347 0.8896 

COA 649.8857 0.2824 7.4359 0.6474 

MCOA 646.4890 0.2835 6.7217 0.9277 
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Figure 3: Convergence for case 2. 

4.3 Case 3: Considering valve point effects 
(VPEs) 
The quadratic cost function achieves a higher 
degree of accuracy and realism as a direct result 
of the influence of tap point loading. When steam 

is introduced, the valves on thermal generating 
units open, which results in rapid increases in 
losses and causes ripples in the cost function 
curve. This causes VPEs. The effect of this is that 
the cost function may be expressed as follows 
(Biswas et al., 2018): 

 
(25) 

where di and ei are the ith generator's price and 
efficiency factors (Biswas et al., 2018). 

Results from SP-DE (Biswas et al., 2018), PSO 
(Bouchekara et al., 2016), COA, and MCOA 
algorithms are shown in Table 4. It is clear from 

the data presented in this table that the MCOA is 
an algorithm that is well-suited to the complex 
OPF. It is also clear from the algorithm 
convergence graph in Figure 4 that the MCOA 
can achieve good and acceptable optimal 
solutions. 

Table 4: The optimal solutions for case 3. 

 

Optimizer Fuel cost 
($/h) 

Emission 
(t/h) Power losses (MW) V.D. 

(p.u.) 

COA 832.8498 0.4390 10.9273 0.7216 

MCOA 832.2134 0.4379 10.7009 0.8323 

SP-DE (Biswas et al., 2018) 832.4813 0.43651 10.6762 0.75042 

PSO (Bouchekara et al., 
2016) 832.6871 - - - 

0 50 100 150 200 250 300 350 400
600

700

800

900

1000

1100

1200

Iteration

Fu
el

 c
os

t (
$/

h)

 

 
COA
MCOA

( )( )min 2
3

1 1
sin

NG NG

i i Gi Gi i i Gi i Gi
i i

J d e P P b P c Pa
= =

= - + + +å å



Journal of the North for Basic and Applied Sciences, Vol. (8), Issue (2),  (November 2023/ Rabi' II 1445 H) 
    

 

 103 

Figure 4: Convergence for case 3. 

 
 

 

4.4 Case 4: Minimizing the fuel cost and real 
power loss 
Engineers strive to minimize energy loss in the 
transmission of electricity. Therefore, we want to 
lessen network fuel and losses in this case. The 
correct form of the objective function is as 
follows: 

 

𝐽> = 𝜆𝑝 ∗ 𝑃&;99 + 𝐽# (26) 

The value of factor 𝜆p has been chosen as equal 
to 40 (Biswas et al., 2018).  

Network loss (PLoss) can be modeled as the 
following average (Biswas et al., 2018): 

𝑃&;99 = ; 𝑔=(𝑉(5 + 𝑉*5 − 2
$%&

=,#
=,((,*)

𝑉(𝑉* 𝑐𝑜𝑠 𝛿(*) (27) 

As seen above, the conductance of the kth branch 
is denoted by the symbol gk. 

In Table 5, we provide the optimal answers to this 
instance, as determined by the algorithms 
explored in this research and the techniques 

analyzed in the relevant prior literature. The 
results show that the approach put forth in this 
MCOA paper is the best option. Figure 5 below 
displays the convergence characteristics of the 
examined methods for the top 30 run-average 
solutions. 
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Table 5: The optimal solutions for case 4. 
 

Optimizer Fuel cost 
($/h) 

Emission 
(t/h) 

Power losses 
(MW) 

V.D. 
(p.u.)  

SF-DE (Biswas et al., 2018) 859.1458 0.2289 4.5245 0.92731 1040.1258 

MJaya (Warid et al., 2018) 827.9124 - 5.7960 - 1059.7524 

QOMJaya (Warid et al., 
2018) 826.9651 - 5.7596 - 1402.9251 

EMSA (Bentouati et al., 
2020) 859.9514 0.2278 4.6071 0.7758 1044.2354 

MOALO (Herbadji et al., 
2019) 826.4556 0.2642 5.7727 1.2560 1057.3636 

SpDEA (Ghoneim et al., 
2021) 837.8510 - 5.6093 0.8106 1062.223 

MSA (Mohamed et al., 
2017) 859.1915 0.2289 4.5404 0.92852 1040.8075 

COA 859.2413 0.2291 4.5359 0.9113 1040.6773 

MCOA 859.0154 0.2289 4.5263 0.9298 1040.0674 

Figure 5: Convergence for case 4. 

4.5 Case 5: Minimizing the fuel cost and 
voltage deviation. 

 
The voltage specification is the most important of 
all the factors considered when determining a 
network's dependability. This may be modified 
by reducing the voltage gap between the load and 

the bus to a value closer to unity. An acceptable 
solution is found when the cost alone is used as 
the target function; however, the voltage 
variations associated with this solution are 
undesirable. Therefore, the objective function of 
the optimum load distribution in scenario 5 of this 
article is described below to minimize both 
voltage deviations (V.D.) and fuel costs. 
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𝐽B = 𝜆𝑣 ∗ ;|𝑉( − 1.0|
$43

(,#

+ 𝐽# (28) 

where the value of the component λv is set to 100 
(Biswas et al., 2018). 

Table 6 presents the best results that could be 
achieved for case 5 using the techniques 

discussed in this article, as well as findings from 
more recent investigations. MCOA has produced 
the lowest and best values for this objective 
function in comparison to other approaches 
shown in Table 6. Figure 6 presents the 
characteristic convergence curves of the various 
methods. 

 

Table 6:  The optimal solutions for case 5. 
 

Optimizer Fuel cost 
($/h) 

Emission 
(t/h) 

Power losses 
(MW) 

V.D. 
(p.u.)  

BB-MOPSO (Ghasemi, Ghavidel, 
Ghanbarian, et al., 2014) 804.9639 - - 0.102

1 815.1739 

DA-APSO (Shilaja & Ravi, 2017) 802.63 - - 0.116
4 814.2700 

SpDEA (Ghoneim et al., 2021) 803.0290 - 9.0949 0.279
9 831.0190 

MNSGA-II (Ghasemi, Ghavidel, 
Ghanbarian, et al., 2014) 805.0076 - - 0.098

9 814.8976 

PSO-SSO (El Sehiemy et al., 
2020) 803.9899 0.367 9.961 0.094

0 813.3899 

SSO (El Sehiemy et al., 2020) 803.73 0.365 9.841 0.104
4 814.1700 

PSO (El Sehiemy et al., 2020) 804.477 0.368 10.129 0.126 817.0770 

MFO (Mohamed et al., 2017) 803.7911 0.36355 9.8685 0.105
63 814.3541 

EMSA (Bentouati et al., 2020) 803.4286 0.3643 9.7894 0.107
3 814.1586 

TFWO (Sarhan et al., 2022) 803.416 0.365 9.795 0.101 813.5160 

ECHT-DE (Biswas et al., 2018) 803.7198 0.36384 9.8414 0.094
54 813.1738 

MOMICA (Ghasemi, Ghavidel, 
Ghanbarian, et al., 2014) 804.9611 0.3552 9.8212 0.095

2 814.4811 

MPSO (Mohamed et al., 2017) 803.9787 0.3636 9.9242 0.120
2 815.9987 

COA 804.0138 0.3673 10.0020 0.107
1 814.7277 

MCOA 803.7176 0.3614 9.7753 0.094
1 813.1276 

5J
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Figure 6: Convergence for case 5. 

 

 

4.6 Case 6: Minimizing the fuel cost, voltage 
deviation, emissions, and losses 
 

This function models fuel cost, voltage deviation, 
active power loss and emission with 𝜆v = 21, 𝜆p 
= 22 and 𝜆e = 19 (Biswas et al., 2018): 

𝐽C = 𝐽# + 𝜆𝑣 ∗ ;|𝑉( − 1.0|
$43

(,#

+ 𝜆𝑒 ∗;𝐹D((𝑃!()
$!

(,#

+ 𝜆𝑝 ∗ 𝑃&;99 (29) 

∑ 𝐹D((𝑃!()$!
(,#  is expressed as follows: 

𝐹D =;v𝛼( + 𝜉( 𝑒𝑥𝑝( 𝜆(𝑃!() + 𝛽(𝑃!( + 𝛾(𝑃!(5 z
$!

(,#

 (30) 

where FEi signifies the emission,𝛾(,𝛽(, 𝜉( and 𝜆( 
show the emission coefficients of ith generator. 

Table 7 summarizes the findings of the algorithms 
investigated in this study compared to the most 
successful results of more recent papers. This 
table makes it abundantly evident that the MCOA 

optimization technique is the superior choice 
among these other optimization approaches for 
the sixth ideal load distribution scenario. Figure 7 
depicts, after that, the convergence characteristic 
of the COA and MCOA algorithms used in this 
example.  
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Table 7: The optimal solutions for case 6. 
 

Algorithm Fuel cost 
($/h) 

Emission 
(t/h) 

Power losses 
(MW) 

V.D. 
(p.u.)  

MSA (Mohamed et al., 2017) 830.639 0.25258 5.6219 0.29385 965.2907 

SSO (El Sehiemy et al., 2020) 829.978 0.25 5.426 0.516 964.9360 

PSO (El Sehiemy et al., 2020) 828.2904 0.261 5.644 0.55 968.9674 

J-PPS3 (Gupta et al., 2021) 830.3088 0.2363 5.6377 0.2949 965.0228 

J-PPS2 (Gupta et al., 2021) 830.8672 0.2357 5.6175 0.2948 965.1201 

J-PPS1 (Gupta et al., 2021) 830.9938 0.2355 5.6120 0.2990 965.2159 

MNSGA-II (Ghasemi, 
Ghavidel, Ghanbarian, et al., 
2014) 

834.5616 0.2527 5.6606 0.4308 972.9429 

MFO (Mohamed et al., 2017) 830.9135 0.25231 5.5971 0.33164 965.8080 

MOALO (Herbadji et al., 2019) 826.2676 0.2730 7.2073 0.7160 1005.0512 

MODA (Ouafa et al., 2017) 828.49 0.265 5.912 0.585 975.8740 

I-NSGA-III (Zhang et al., 2019) 881.9395 0.2209 4.7449 0.1754 994.2078 

BB-MOPSO (Ghasemi, 
Ghavidel, Ghanbarian, et al., 
2014) 

833.0345 0.2479 5.6504 0.3945 970.3379 

COA 830.2933 0.2558 5.7225 0.3319 968.0184 

MCOA 830.2798 0.2529 5.5876 0.2971 964.2521 

 

Figure 7: Convergence for case 6. 
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4.7 OPF solutions, including stochastic solar 
and wind power. 
Wind Power 
In order to construct a work optimization strategy 
to deal with OPF challenges, a future wind energy 
profile prediction is required. These forecasts are 
calculated with the use of the Weibull probability 
distribution function. The first stage in finding a 
solution to a problem is to estimate how much 
energy can be generated from the wind, which 
may be done independently. Wind speed is a 
common input into models of wind power 
generation. Here, the Weibull probability 
distribution function is used to create and 
simulate the wind speed fv(v), where k and c are 
dimensionless form factors and step sizes, 
respectively, in the following equations (Biswas 
et al., 2018): 

𝑓E(𝜈) =
𝑘
𝑐 }
𝜈
𝑐~

=F#
× 𝑒FG

E
HI

*

 (31) 

According to formula (33), [22] the average of the 
Weibull probability distribution (Mwbl) is mainly 
determined by 𝛤(𝑥) (32) (Biswas et al., 2018): 

𝑀78' = 𝑐 ∗ 𝛤(1 + 𝐾F#) (32) 

𝛤(𝑥) = � 𝑒F:𝑡0F#𝑑𝑡
J

K
 (33) 

A wind turbine is a device that generates 
electricity from the kinetic and potential energy 
of the wind. The relation between wind velocity 
and the electrical power generated by a wind 
turbine is given by equation (34) (Biswas et al., 
2018). 

𝑃7(𝜈)

= �

0; 	𝜈 ≤ 𝜈(.and𝜈 > 𝜈;L:
𝑃7< �

𝜈 − 𝜈(.
𝜈< − 𝜈(.

� ;	𝜈(. < 𝜈 ≤ 𝜈<
𝑃7<; 	𝜈< < 𝜈 ≤ 𝜈;L:

 (34) 

where	𝑃7<is the wind turbine's rated power, wind 
turbine's cut-in wind rate is vin, and vout is the cut-
out wind rate and vr is the valued wind speed. 

Equation (43) describes the total cost of wind 
power generation in (USD/h), which includes 
three main items: direct wind turbine, storage, and 
penalty costs (Biswas et al., 2018). 

𝐶M% =;5𝐶7,*v𝑃79,*z + 𝐶47,*v𝑃7/N,* − 𝑃79,*z + 𝐶O7,*v𝑃79,* − 𝑃7/N,*z6
$+

*,#

 (35) 

Suppose the power production from the wind 
turbine is less than the value anticipated. In that 
case, a storage charge will be levied to 
compensate for the forecasted value. A fine is 
imposed on the company if the actual 
consumption of wind energy is higher than the 
predicted figure. Because of this, having a system 
that provides an accurate assessment of the wind 
power profile is of the utmost importance. The 
costs are broken down into USD per hour using 
the methodology outlined in (Biswas et al., 2018).  
Solar power units 
It is difficult to forecast how much energy can be 
harvested from the sun because of atmospheric 
variables like clouds and solar radiation. Since 
solar radiation is a known quantity, it may be used 
to calculate the maximum power generated by 
solar systems (G). 

In this section, the lognormal probability 
distribution function 𝑓!(𝐺)(Biswas et al., 2018): 

𝑓!(𝐺) =
=

!P√5R
× 𝑒FG

(-./01)
!3!

I for G>0 (36) 

The conversion of solar energy into usable power 
is the final goal of a solar energy system. 

In equation (36), the estimated solar radiation is 
utilized to describe the output power of this 
system, which is denoted by the function 𝑃9(𝐺) as 
a function (Biswas et al., 2018): 

𝑃9(𝐺) =

⎩
⎪
⎨

⎪
⎧𝑃9<

𝐺5

𝐺9:S𝑅H
; 	0 < 𝐺 < 𝑅H

𝑃9<
𝐺

𝐺9:SH
; 	𝐺 ≥ 𝑅H

 (37) 

The cost of producing energy from solar sources 
is broken down into three distinct categories, 
much as the cost of producing electricity from 
wind sources, to mitigate the effects of the 
inherent uncertainty in the cost estimate. 

Equation (38) determine the following sum of all 
components in terms of their respective (USD/h) 
values (Biswas et al., 2018): 
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(38) 

wind/solar integrated OPF constraints and 
variables 
To incorporate the variables associated with the 
wind and solar power generations into the 

conventional OPF problem, some modifications 
and additional constraints should be considered. 
So, the equality constraints (6) and (7) are 
expressed as given in (39) and (40). 

𝑃!(+𝑃79,(+𝑃99,( − 𝑃)( − 𝑉(;𝑉*5𝐵(* sin 	 (𝛿( − 𝛿*) + 𝐺(* cos 	 (𝛿( − 𝛿*)	6
$+

*,#

	= 	0 (39) 

𝑄!(+𝑄79,(+𝑄99,( − 𝑄)( − 𝑉(;𝑉*5𝐺(* sin( 𝛿( − 𝛿*) 	−	𝐵(* 𝑐𝑜𝑠( 𝛿( − 𝛿*)6 	= 	0
$+

*,#

 (40) 

 

Also, the voltage magnitude, active and reactive 
power generations at the installed locations of the 
wind and solar power generation units are 
restricted using the constraints (41) to (46). 

𝑉79,(-(. ≤ 𝑉79,( ≤ 𝑉79,(-/0 (41) 

𝑃79,(-(. ≤ 𝑃79,( ≤ 𝑃79,(-/0 (42) 

𝑄79,(-(. ≤ 𝑄79,( ≤ 𝑄79,(-/0 (43) 

𝑉99,(-(. ≤ 𝑉99,( ≤ 𝑉99,(-/0 (44) 

𝑃99,(-(. ≤ 𝑃99,( ≤ 𝑃99,(-/0 (45) 

𝑄99,(-(. ≤ 𝑄99,( ≤ 𝑄99,(-/0 (46) 

In the wind/solar integrated OPF problem, the 
control variables, u is defined as follows: 

𝑢 = [𝑄, 𝑉! , 𝑉7 , 𝑉9, 𝑃7 , 𝑃9, 𝑃! , 𝑇], 

(47) 

𝑄		 = 5𝑄"$ , … , 𝑄""%6, 

𝑉! = 5𝑉!$ , . . . , 𝑉!"#6, 

𝑉7 = 5𝑉79,#, … , 𝑉79,"46, 

𝑉9 	= 5𝑉99,$ , … , 𝑉99,"56, 

𝑃7 = 5𝑃79,#, … , 𝑃79,"46, 

𝑃9 	= 5𝑃99,$ , … , 𝑃99,"56, 

𝑃! = 5𝑃!! , . . . , 𝑃!"#6, 

𝑇		 = [𝑇#, . . . , 𝑇$%]. 

Besides, the state variables, x is represented as 
follows: 

𝑥 = 5𝑆, 𝑄7 , 𝑄9, 𝑄! , 𝑉' , 𝑃!$6, 

(48) 

𝑆 = 5𝑆'$ , . . . , 𝑆'"()6, 

𝑄7 = 5𝑄79,#, … , 𝑄79,"46, 

𝑄9 = 5𝑄99,$ , … , 𝑄99,"56, 

𝑄! = 5𝑄!$ , . . . , 𝑄!"#6, 

𝑉' = 5𝑃79,#, … , 𝑃79,"46. 

4.7.1 Case 7: Minimizing generation costs 
considering the variable nature of renewable 
sources  

According to (39), case 7 minimizes and 
maximizes the overall cost of generating 
electricity by thermal and renewable energy 
sources (Biswas et al., 2018). The PDF 
parameters are outlined in (Biswas et al., 2018), 
and the cost coefficients are unchanged from case 
1.  
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Table 8 displays the best possible answers 
obtained from each algorithm tested in this 
research after 30 iterations. Pws1 shows the 
expected output from WG1, and so on, for each 
successive wind generator. According to this 
table, the proposed MCOA algorithm has 

successfully located optimal solutions that are 
both of a higher quality and perform much better 
than the original COA approach. The convergent 
behavior of the two algorithms is shown in Figure 
8 for case 7 of the research. 

 

       Table 8: The optimal variables for case 7. 

Variables COA MCOA 

PG1 (MW) 134.90794 134.90791 

PG2 (MW) 27.5907 27.7283 

Pws1 (MW) 43.1839 43.3109 

PG3 (MW) 10.0001 10 

Pws2 (MW) 36.2407 36.5707 

Pss (MW) 37.2677 36.6646 

VG1 (p.u.) 1.0717 1.0721 

VG2 (p.u.) 1.0567 1.0571 

VG5 (p.u.) 1.0346 1.035 

VG8 (p.u.) 1.0396 1.0397 

VG11 (p.u.) 1.0992 1.0983 

VG13 (p.u.) 1.0587 1.0551 

QG1 (MVAR) -2.12274 -1.95067 

QG2 (MVAR) 12.4535 13.2051 

Qws1 (MVAR) 23.1089 23.2034 

QG3(MVAR) 34.7495 35.0095 

Qws2 (MVAR) 30 30 

Qss (MVAR) 18.8345 17.5462 

Fuelvlvcost ($/h) 437.5577 438.0114 

Wind gen cost ($/h) 241.8954 243.4495 

Solar gen cost ($/h) 103.0597 100.7301 

Total Cost ($/h) 782.5129 782.1910 

Emission (t/h) 1.76231 1.76227 

Power losses (MW) 5.7911 5.7823 

V.D. (p.u.) 0.47399 0.46413 
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Figure 8: Convergence for case 7. 

 
 

 

4.7.2 Case 8: Minimizing generating costs 
while accounting for the cost of carbon and the 
variable output of renewable sources 
The threat of climate change has led some nations 
to raise their demands that the whole energy 
sector cut carbon emissions. Ctax, or carbon 
taxes, are charged on emissions of greenhouse 
gases. 

This tax is intended to encourage financial 
investments in renewable energy sources like 
wind and solar power. The following is a 
breakdown, in USD per hour, of the cost of 
publishing (Biswas et al., 2018): 

 

Emission cost: 𝐶D = 𝐶:/0𝐸 
(50) 

 

𝐽T = 𝐽U + 𝐶:/0𝐸 (51) 

As a way of reducing the total costs associated 
with the generation of electrical power, the 
concluding case study of this article suggests 
imposing a financial penalty in the form of a 
carbon tax on the emissions of greenhouse gases 
by traditional thermal energy producers. The 
anticipated total cost of Equation (51  ) is what 
needs to be maintained at the lowest feasible 
level. It is anticipated that the rate of the carbon 
tax will be twenty dollars per ton. 

Table 9 presents the results of a simulation 
conducted using these two methods to determine 
the ideal load distribution. The result produced by 
the proposed adjusted version of the algorithm is 
superior to that produced by the original method. 
More specifically, the pace of development of 
energy production programs based on renewable 
energy production will be decided by the volume 
of emissions and the degree of pricing and taxes 
on carbon. The convergent behavior of the two 
algorithms is shown in Figure 9 for case 8 of the 
research. 
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Table 9:  The optimal variables value for case 8. 
 

Variables COA MCOA 

PG1 (MW) 123.98540 123.23593 

PG2 (MW) 34.3509 32.2800 

Pws1 (MW) 46.6899 45.6210 

PG3 (MW) 10.0000 10.0000 

Pws2 (MW) 39.2993 38.4229 

Pss (MW) 34.3579 39.1160 

VG1 (p.u.) 1.0704 1.0704 

VG2 (p.u.) 1.0569 1.0569 

VG5 (p.u.) 1.0359 1.0357 

VG8 (p.u.) 1.1000 1.0403 

VG11 (p.u.) 1.0983 1.0998 

VG13 (p.u.) 1.0498 1.0566 

QG1 (MVAR) -2.97776 -2.74168 

QG2 (MVAR) 11.05753 12.23749 

Qws1 (MVAR) 22.23269 22.97597 

QG3(MVAR) 40.00000 35.18169 

Qws2 (MVAR) 30.00000 30.00000 

Qss (MVAR) 15.37773 18.01536 

Fuelvlvcost ($/h) 435.0921 426.2147 

Wind gen cost ($/h) 264.8905 257.9513 

Solar gen cost ($/h) 93.4094 108.8521 

Total Cost ($/h) 793.3920 793.0180 

Emission (t/h) 0.91514 0.87681 

J8 811.6948 810.5542 

Power losses (MW) 5.2833 5.2758 

V.D. (p.u.) 0.45900 0.47042 

Carbon tax ($/h) 18.3028 17.5362 



Journal of the North for Basic and Applied Sciences, Vol. (8), Issue (2),  (November 2023/ Rabi' II 1445 H) 
    

 

 113 

Figure 9: Convergence for case 8. 

 

 

4.8 Discussions on the IEEE 30-bus network 
In this section, we comprehensively compare 
between the suggested MCOA and the basic 
COA, and also, three modern powerful recent 
algorithms, arithmetic optimization algorithm 
(AOA) (Abualigah et al., 2021), weighted mean 
of vectors (INFO) (Ahmadianfar et al., 2022) and 
wild geese algorithm (WGA) (Ghasemi et al., 
2021), over all of the scenarios covered in this 
article on the IEEE 30-bus network. Best, 
average, and worst results from 30 runs, as well 
as standard deviation and average running time, 
are shown in Table 10. An in-depth examination 
of this table demonstrates that the suggested 
MCOA method has triumphed over the original 
COA algorithm and three modern powerful recent 
algorithms, AOA, INFO and WGA in every 
situation tested and that it has done so without 
increasing the time it takes to execute the original 
algorithm or the complexity of the computations 
it conducts.  

It is, therefore, evident that the suggested MCOA 
performs statistically differently from its 

competitors. According to these quantitative and 
qualitative findings, the proposed MCOA can 
produce challenging and competitive results at 
faster convergence speeds. Adopting a 
revolutionary hybrid optimization approach for 
the MCOA algorithm is proposed. This enhances 
its global search capability while balancing 
exploration and exploitation to achieve high-
quality solutions. The algorithm can achieve 
better search efficiency by leveraging this 
approach and avoiding local optima. As part of 
the evaluation of the performance of the MCOA 
algorithm, it has been compared with the AOA, 
the INFO, the WGA, and the basic COA 
algorithms. As a result of the results, the 
suggested MCOA is superior and effective. The 
proposed algorithm has the advantage of fast 
convergence to global optima, making it suitable 
for solving complex real-world power system 
problems. We expect that as time progresses, the 
OPF problem will include emergency events, 
large-scale testing systems, and the penetration of 
electric vehicles. 
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  Table 10:  Statistical results of MCOA and COA. 
 

Method Min Time (s) Max Mean Std. 

 Case 1 

AOA 802.6318 28.7 804.9570 803.7042 1.78 

INFO 801.8834 30.4 804.3152 802.8556 2.93 

WGA 800.9701 21.9 801.6926 801.2999 0.842 

COA 801.7449 22.4 802.8623 802.0724 2.81 

MCOA 800.4791 22.4 800.7816 800.5629 0.283 

Method Min Time (s) Max Mean Std. 
 

Case 2 

AOA 649.2593 26.9 651.5815 650.3662 2.46 

INFO 647.7004 23.0 650.0457 648.9654 1.43 

WGA 646.9731 21.1 647.3950 647.8821 0.749 

COA 649.8857 22.5 651.1421 650.2790 1.94 

MCOA 646.4890 22.5 646.9002 646.6874 0.375 

Method Min Time (s) Max Mean Std. 
 

Case 3 

AOA 833.7423 22.9 834.6465 835.9325 2.34 

INFO 832.8083 29.7 834.3280 833.4100 1.12 

WGA 832.4601 25.1 833.1994 832.7543 0.554 

COA 832.8498 22.5 833.9849 833.3615 1.75 

MCOA 832.2134 22.4 832.7816 832.5022 0.341 

Method Min Time (s) Max Mean Std. 
 

Case 4 

AOA 1041.5309 26.0 1042.8252 1042.0067 1.20 

INFO 1040.9591 30.2 1042.3516 1041.8404 1.74 

WGA 1040.3394 20.9 1040.9139 1040.6612 0.916 

COA 1040.6773 22.4 1042.4279 1041.6434 1.96 

MCOA 1040.0674 22.5 1040.6715 1040.3200 0.507 

Method Min Time (s) Max Mean Std. 

 Case 5 
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AOA 815.5255 28.1 817.6217 816.8410 1.01 

INFO 814.3942 33.4 816.5601 815.5889 1.26 

WGA 813.5269 23.8 814.2247 813.7112 0.604 

COA 814.7277 22.5 816.2242 815.5209 1.25 

MCOA 813.1276 22.5 813.7012 813.3723 0.429 

Method Min Time (s) Max Mean Std. 

 Case 6 

AOA 968.4278 25.5 971.2885 970.2347 2.61 

INFO 965.0305 29.0 970.4143 968.1889 2.43 

WGA 964.8344 23.6 965.4578 965.6549 0.738 

COA 968.0184 22.5 968.1634 967.0625 1.68 

MCOA 964.2521 22.5 965.0307 964.5846 0.814 

Method Min Time (s) Max Mean Std. 

 Case 7 

AOA 783.5939 27.6 785.2641 784.9991 0.977 

INFO 782.4830 29.7 784.9170 783.3454 0.868 

WGA 782.2985 25.4 782.9775 782.7531 0.852 

COA 782.5129 26.4 783.9485 783.2901 1.34 

MCOA 782.1910 26.4 782.7316 782.4721 0.663 

Method Min Time (s) Max Mean Std. 

 Case 8 

AOA 812.7563 30.1 815.1569 814.3313 3.92 

INFO 811.6345 32.3 814.2818 812.8100 2.84 

WGA 810.6845 27.3 811.4569 811.1184 0.923 

COA 811.6948 26.5 813.5013 812.1716 2.04 

MCOA 810.5542 26.6 811.1652 810.8203 0.698 

5. OPF in the IEEE 118-Bus large-scale test 
System 
 

In this part, the IEEE 118-bus test system (Meng 
et al., 2021) is used to evaluate the efficiency of 
the proposed MCOA in solving a larger power 
system. This test system has 54 generators, 186 

branches, 9 transformers, 2 reactors, and 12 
capacitors. It has 129 control variables considered 
for 54 generator active powers and bus voltages, 
9 transformer tap settings, and 12 shunt capacitor 
reactive power injections. All buses have voltage 
limitations between 0.94 and 1.06 p.u. Within the 
range of 0.90–1.10 p.u., the transformer tap 
settings are evaluated. Shunt capacitors have 
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available reactive powers ranging from 0 to 30 
MVAR (Duman, Rivera, et al., 2020).  

5.1. Case 1: OPF problem with quadratic cost 
function for traditional generators 
without the solar and wind energy sources 

In Tables 11 and 12, the result is compared to the 
results of other algorithms under investigation 
and some other techniques reported in the 
literature, including CS-GWO (Meng et al., 
2021); MSA (Mohamed et al., 2017), FPA 
(Mohamed et al., 2017), MFO (Mohamed et al., 
2017), PSOGSA (Mohamed et al., 2017), IABC 
(Bai et al., 2017), MCSA (Shaheen et al., 2021), 

MRao-2 and Rao algorithms (Hassan et al., 
2021), SSO (Hassan et al., 2021), ICBO 
(Bouchekara et al., 2016), GWO (El-Fergany & 
Hasanien, 2015), and EWOA (Nadimi-Shahraki 
et al., 2021). According to this table, the MCOA 
outperforms various optimization techniques 
used to solve the large-scale OPF. According to 
the obtained simulation data, the minimum cost 
obtained from MCOA is 129517.37 $/h, which is 
less comparing to result of other algorithms. Also, 
Figure 10 depicts, after that, the convergence 
characteristic of the studied algorithms used in 
this case. 

 

Table 11:  Optimal decision variables settings for case 1. 

 
Actual power output of generators 

PG1~ PG9 24.195 0.028 0.012 0.030 403.000 85.600 20.000 11.000 20.200 

PG10~ PG18 0.015 195.982 281.021 10.918 7.149 15.998 0.183 5.000 48.300 

PG19~ PG27 41.898 19.000 194.017 49.210 31.000 32.522 149.991 148.403 0.000 

PG28~ PG36 354.500 350.903 458.220 0.000 0.000 0.000 15.822 19.620 0.000 

PG3~ PG45 432.000 0.000 3.601 506.989 0.000 0.000 0.000 0.000 233.375 

PG46~ PG54 37.885 0.220 3.998 29.041 6.000 35.000 36.500 0.011 0.000 

Voltage magnitude of generators 

VG1~ VG9 1.020 1.038 1.040 1.075 1.100 1.029 1.036 1.042 1.028 

VG10~ 
VG18 1.065 1.093 1.100 1.052 1.048 1.048 1.048 1.032 1.025 

VG19~ 
VG27 1.021 1.049 1.060 1.031 1.027 1.029 1.049 1.068 1.055 

VG28~ 
VG36 1.071 1.071 1.079 1.061 1.061 1.048 1.048 1.030 1.058 

VG3~ VG45 1.069 1.080 1.078 1.092 1.068 1.075 1.076 1.600 1.061 

VG46~ 
VG54 1.050 1.041 1.030 1.028 1.029 1.042 1.020 1.050 1.060 

Transformers' tap 

T1~ T9 1.047 1.047 0.965 0.963 1.000 1.008 0.982 0.980 0.971 

VAR compensating units 

QC1~QC9 30.000 0.000 0.000 2.000 20.000 8.000 8.000 28.235 28.748 
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QC10~QC14 29.9984 9.006 29.996 1.000 11.010 Cost 
($/h) 129517.37 PLoss 76. 360 

        Table 12: Optimal results for case 1. 
 

Optimizer Min Mean Max Std. Time 
(s) 

MCOA 129537.37 129549.25 129555.14 6.37 726 

COA 138685.15 142950.74 144007.34 699.4 730 

WGA 129540.44 129552.81 129558.95 8.93 703 

AOA 139569.56 143175.14 145509.84 801.2 1134 

INFO 138672.82 142884.29 143578.68 445.7 1378 

CS-GWO (Meng et al., 2021) 129544.0 129558.9 129568.8 10.7 4252.5 

PSOGSA (Mohamed et al., 
2017) 129733.6 - - - - 

FPA (Mohamed et al., 2017) 129688.7 - - - - 

MFO (Mohamed et al., 2017) 129708.1 - - - - 

Rao-1 (Hassan et al., 2021) 131817.9 - - - 808.0 

Rao-3 (Hassan et al., 2021) 131793.1 - - - 806.7 

Rao-2 (Hassan et al., 2021) 131490.7 - - - 804.6 

MRao-2 (Hassan et al., 2021) 131457.8 - - - 1160.3 

EWOA (Nadimi-Shahraki et 
al., 2021) 140175.8 - - - - 

MCSA (Shaheen et al., 2021) 129873.6 - - - - 

ICBO (Bouchekara et al., 2016) 135121.6 - - - - 

MSA (Mohamed et al., 2017) 129640.7 - - - - 

SSO (Hassan et al., 2021) 132080.4 - - - - 

GWO  (El-Fergany & 
Hasanien, 2015) 139948.1 142989.3 145484.6 797.8 1766.2 

IABC (Bai et al., 2017) 129862.0 129895.0 - 40.8 4157.8 
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Figure 10: Convergence for case 1. 

 
5.2. Case 2: OPF problem with quadratic 
cost function for traditional generators 
including the solar and wind energy 
sources. 

Similar to the previous case system, wind energy 
sources are located in buses 18, 32, 36, 55, 104, 
and 110. Also, solar energy generation units are 
in nodes 6, 15 and 34. The best solution for this 
case is obtained by the proposed MCOA 
algorithm, as shown in Table 13. In addition, 
Table 14 represents a comparative study between 
the results of the algorithms studied in this article 

and the solutions obtained in the reference 
(Duman, Rivera, et al., 2020). From these results, 
the MCOA is a very powerful algorithm for 
optimizing and distributing optimization in large 
and real power systems. The characteristic of the 
convergence of the algorithms studied in this case 
is shown in Figure 11, demonstrating the good 
convergence performance of the proposed 
optimization algorithm. 

In the case of the 118-bus system, OPF's 
superiority over MCOA is demonstrated as the 
system dimensions increase. 

Table 13: Optimal decision variables settings for case 2. 
 

Actual power output of generators 

PG1~ PG9 33.000 30.500 79.910
0 30.102 169.52

6 59.401 100.000 150.00
00 30.095 

PG10~ 
PG18 30.505 96.011 144.98

2 30.000 32.103 120.00
0 149.655 120.00

0 30.082 

PG19~ 
PG27 

30.000
0 35.696 121.49

8 45.000 150.00
0 34.167 102.935 102.29

9 30.0 

PG28~ 
PG36 

202.17
7 

205.48
9 

273.78
0 30.200 30.200 30.200 30.000 30.100 30.100 

PG3~ 
PG45 

262.00
0 30.0 31.189 292.27

5 30.081 30.000 30.000 30.393 112.70
1 

0 100 200 300 400 500 600
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

5

Iteration

Fu
el

 c
os

t (
$/

h)

 

 
MCOA
COA
WGA
AOA
INFO



Journal of the North for Basic and Applied Sciences, Vol. (8), Issue (2),  (November 2023/ Rabi' II 1445 H) 
    

 

 119 

PG46~ 
PG54 42.000 145.00

0 30.000 30.009 120.00
0 

401.00
0 30.001 30.050 30.001 

Voltage magnitude of generators 

VG1~ 
VG9 0.9498 0.980 0.970 0.983 0.998 0.971 0.959 0.959 0.961 

VG10~ 
VG18 0.974 0.974 0.983 0.974 0.958 0.972 0.961 0.953 0.946 

VG19~ 
VG27 0.949 0.981 0.981 0.951 0.951 0.951 0.963 0.963 0.963 

VG28~ 
VG36 0.970 1.025 1.025 0.975 0.987 0.987 0.955 0.955 0.979 

VG3~ 
VG45 1.01 0.949 0.958 0.968 0.953 0.971 0.972 0.995 0.982 

VG46~ 
VG54 0.980 0.948 0.960 0.9560 0.961 0.947 0.961 0.961 0.970 

Transformers' tap 

T1~ T9 0.962 1.033 1.000 1.000 0.995 0.995 0.987 0.9890 0.941 

VAR compensating units 

QC1~QC9 12.714 11.290
3 0.250 4.171 18.000 0.010 11.000 13.886 11.002 

QC10~QC
14 6.557 13.001 23.357 1.106 5.999 Cost 

($/h) 
103395.
78 PLoss 55.119 

Table 14: Optimal results for case 2. 
 

Optimizer Min Mean Max Std. Time 
(s) 

MCOA 103395.78 103406.94 103415.67 10.42 781 

COA 107008.21 109639.71 112617.55 818.2 759 

WGA 103405.36 103412.05 103419.40 25.94 810 

AOA 116994.05 120201.73 124011.65 1095.3 1240 

INFO 106849.00 109114.19 113867.14 504.6 1405 

DS (Duman, Rivera, et al., 
2020) 110992.4249 112680.2902 114787.7786 953.6529 - 

BSA (Duman, Rivera, et al., 
2020) 117149.9833 120443.2982 123385.1256 1638.0949 - 
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MSA (Duman, Rivera, et al., 
2020) 107695.0619 111205.0554 116303.6361 1857.2167 - 

DEEPSO (Duman, Rivera, et 
al., 2020) 103407.6296 103889.1446 104507.4884 292.8782 - 

Figure 11: Convergence for case 2. 

 
 
6 . Conclusion 
The OPF problem, among various goals, is 
quickly becoming one of the most in-demand 
optimization problems in today's modern power 
networks. This article investigates multiple 
multiobjective OPF challenges, including 
renewable energy. A wide range of possible 
scenarios are considered considering power 
systems' complexities and constraints. These 
concerns include power loss, fuel expense, 
environmental effects, and voltage deviation 
values. In addition, a modified version of the 
Cuckoo optimization algorithm (COA) (MCOA) 
is built. A variety of algorithms have been 
developed for optimal multiobjective OPF under 
a variety of circumstances. Studies have 
demonstrated the efficiency and reliability of the 
MCOA algorithm in solving OPF problems in the 
presence of renewable DG resources.  
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